
1

Slicing-1, Sp06 © BGRyder 1

Program Slicing

• Static slicing
– Following control and data dependences
– Executable slices
– Intra- versus interprocedural slicing
– Weiser algm
– Horwitz, Reps, Binkley algm

• An “SDG” for OO programs

F. Tip, “A Survey of Program Slicing
Techniques, Jl of Programming Languages,
Vol 3, 1995, pp 121-189.

Slicing-1, Sp06 © BGRyder 2

Slicing

• A program slice is comprised of the parts of a
program that directly or indirectly affect a
computation of interest

• Identify a variable at a program point whose value is the focus --
slicing criterion

• Introduced by Mark Weiser of Xerox Parc in late 1970s-early
1980s
– “A program slice S is the reduced, executable program obtained from a

program P by removing statements, such that S replicates part of the
behavior of P” (Tip, JPL’95)

• Static slice - makes no assumptions about program
input

• Dynamic slice - relies on a specific program run

2

Slicing-1, Sp06 © BGRyder 3

Backward Static Slicing
read(n);
k := 1;
sum := 0;
product := 1;
while k<= n do
{ sum := sum + k;
 product := product * k;
 k := k + 1;
}
write (sum);
write (product);
Original Program

read (n);
k := 1;

product := 1;
while k <= n do
{
 product := product * k;
 k := k + 1;
}

write (product);//**
Static slice wrt (**, product)

Tip, JPL’95

Slicing-1, Sp06 © BGRyder 4

Program Dependence Graph

• A data structure that removes unnecessary
sequential flow of control from a program

• Nodes are computations (e.g., statements)
• Edges connect computations along immediate def-use

dependences and along immediate control dependences
• Historically was used for parallelization but also

uncovered relevant relations to slicing

3

Slicing-1, Sp06 © BGRyder 5

PDG of Example
entry

read(n)

k:=1;

sum := 0;

product:=0;

while (k<=n)

write(sum);

write(product);

sum:=sum+k: product :=
 product*k;

k:=k+1;

Control dep
Data dep

read(n); k := 1; sum := 0;
product := 1;
while k<= n do
{ sum := sum + k;
 product := product * k;
 k := k + 1;}
write (sum);write (product);

Tip, JPL’95

Slicing-1, Sp06 © BGRyder 6

entry

read(n)

k:=1; product:=0;

while (k<=n) write(product);

product :=
 product*k;

k:=k+1;

Same slice shown
on the PDG.

read(n); k := 1; sum := 0;
product := 1;
while k<= n do
{ sum := sum + k;
 product := product * k;
 k := k + 1;}
write (sum);write (product);

Tip, JPL’95

4

Slicing-1, Sp06 © BGRyder 7

Mark Weiser’s Static Slices

• Slicing criterion (n,V) st n is node in cfg and V is a
subset of the program’s variables

• Slice S will be subset of the program’s statements s.t.
• S is a valid program
• Whenever P halts on an input then S also halts for that input,

computing the same values for variables in V whenever the
statement in node n is executed.

• Finding minimal-sized executable slices is
undecidable

• Not all static slicing methods produce executable
slices

Slicing-1, Sp06 © BGRyder 8

How to deal with procedures?

• Weiser’s slicing:
• Calculate interprocedural Mod(P), Use(P)
• Calculate intraprocedural slice, using Mod(P) and Use(P) at call

statements
• Iteratively generates a new slicing criterion wrt the

intraprocedural slices in 2nd step to explore cfg’s of affected
procedures (callers and callees of procedure in focus)
– Q called by P, slice for relevant variables (actuals substituted for

formals) backward from last stmt of Q

• Problem: calling context problem-- too many
infeasible call path

• Also doesn’t associate output params with specific input params

5

Slicing-1, Sp06 © BGRyder 9

Example
{ 1. a := 17;
 2. b := 18;
 3. P(a,b,c,d);
 4. write(d);
}
 Procedure P(v, w, x, y)
{ 5. x := v;
 6. y := w;
}
Slicing criterion: (4, {d}).

Tip, JPL’95

{ 1. a := 17;
 2. b := 18;
 3. P(a,b,c,d);

}
 Procedure P(v, w, x, y)
{
 6. y := w;
}
Weiser slice

Slicing-1, Sp06 © BGRyder 10

Example
Tip, JPL’95

{ 1. a := 17;
 2. b := 18;
 3. P(a,b,c,d);
 4. write(d);
}
 Procedure P(v, w, x, y)
{ 5. x := v;
 6. y := w;
}
Slicing criterion: (4, {d}).

{
 2. b := 18;
 3. P(a,b,c,d);

}
 Procedure P(v, w, x, y)
{
 6. y := w;
}
HRB slice

6

Slicing-1, Sp06 © BGRyder 11

Horwitz-Reps-Binkley Slicing

• Three part algorithm
• Form the System Dependence Graph (SDG) from the

PDGs of each procedure
• Compute interprocedural summary info, adding

summary edges to SDG between input and output
params
• In 2 passes, extract interprocedural slices from an SDG

• Modeled parameter passing by value-result
• Slices computed are not necessarily executable

• Need to deal with calls to procedures some of whose
params are sliced away

Horwitz, Reps, Binkley, “Interprocedural
Slicing Using Dependence Graphs”,
TOPLAS, Jan 1990, vol 12, no 1

Slicing-1, Sp06 © BGRyder 12

SDG

• Formed from PDGs for each procedure and main
– Intraprocedural

• Actual-in, actual-out vertices for params. Control dep on the call-
site vertex

• Formal-in, formal-out vertices control dep on procedure entry
vertex

– Interprocedural
• Entry vertex of callee is control dep on call-site vertex
• Param-in edge between actual-in and formal-in vertices
• Param-out edge beetween actual-out and formal-out vertices
• Summary edges representing transitive interprocedural data

dependences;

7

Slicing-1, Sp06 © BGRyder 13

Extracting Slices from the SDG

• Assume start slice at vertex x
• Find all vertices from which x can be reached

without descending into procedure calls
• Find all remaining vertices by descending into

all previously encountered procedure calls,but
not ascending up into callers.

Slicing-1, Sp06 © BGRyder 14

Horwitz,
Reps,
Binkley,
TOPLAS
Jan 1990

Step 1:
SDG w.
control dep &
data-dep edges

8

Slicing-1, Sp06 © BGRyder 15

Horwitz,
Reps,
Binkley,
TOPLAS
Jan 1990

Step 2:
SDG w.
summary edges
betw params

Slicing-1, Sp06 © BGRyder 16

Horwitz,
Reps,
Binkley,
TOPLAS
Jan 1990

Slice wrt
Inc.z(out)
Phase 1

9

Slicing-1, Sp06 © BGRyder 17

Horwitz,
Reps,
Binkley,
TOPLAS
Jan 1990

Slice wrt
Inc.z(out)
(new edges
in bf)
Phase 2

Slicing-1, Sp06 © BGRyder 18

Horwitz,
Reps,
Binkley,
TOPLAS
Jan 1990

Entire slice
wrt Inc.z(out)

10

Slicing-1, Sp06 © BGRyder 19

Imprecision

Can see that Add does not affect value of b parameter, so that call of Add in A()
should not be in slice of Increment wrt its output parameter z in the call in A();

Problem is that y(out) vertex is included in dependence graph of A() even though Add
preserves the value of its second parameter. Can use global interprocedural mod
analysis to avoid putting edges for such parameters in the graph. (Essentially don’t
need to copy-back these preserved-value parameters.)

Slicing-1, Sp06 © BGRyder 20

ClDG: An “SDG” for OO

• Construct SDGs called class dependence graphs
(ClDG) for groups of OO classes (in C++) Larsen &
Harrold, ICSE’96

• Form method PDG w entry vertex; model class w class entry
vertex that connects to entries of all methods

• Treats instance fields as globals passed into and out of every
method (except constructor & destructor)

– Derived class ClDG reuse reps of all inherited methods
– Make explicit edges for implicit constructor calls; other

method calls are analogous to in HRB SDG
– Polymorphic call sites have new vertex representing

dynamic dispatch choice w targets resolved by type-based
call graph construction

11

Slicing-1, Sp06 © BGRyder 21

ClDG construction
• Incomplete systems

• Modeled with supernode representing a driver consisting
of a nondeterministic loop choosing one of each public
entry methods of class on each iteration
• Add data dep edges for instance variables between

possible method calls (var(out) to var(in))

• Case study reported
• C++ program, 9 classes, 65 methods, hierarchy 3 levels

deep; had 1257 vertices in ClDG

Slicing-1, Sp06 © BGRyder 22

Problems with ClDG
• Some ClDG design choices led to imprecision
• New assumptions

– C++ w/o exceptions
– Points-to analysis results available
– Data members accessible only through get methods
– Static members are globals, static methods are global procedures

• Differences with old CLDG
– Objects used as parameters with explicit rep of fields (truncate

recursive data structures using k-limiting
– Polymorphic objects -- a tree of possible object types (with child fields

or child call-site vertices)
– Don’t always reuse method reps in derived classes (may need rep for

new overloaded method or for a method that calls a redefined method
in another derived class)

Liang & Harrold, “Slicing Objects Using
System Dependence Graph”, ICSM 1998

12

Slicing-1, Sp06 © BGRyder 23

Slicing an Object

• To identify slice stmts relevant to a specific
object that affects the slicing criterion

• Obtain the full slice
• Identify method calls where object o is a receiver; this is

set of interesting methods that captures how object o
affects the slicing criterion
• Identify stmts included in the slice because of these call

sites -- these are object o’s slice
– Claim this is good for browsing a slice when

debugging or for program understanding

