
1

TestingOOPLs-2, Sp06 © BGRyder 1

Testing OO Programs - 2

• Regression testing for Java
– What is selective regression testing?
• What does safe mean in this context?
• How find safe subset of regression tests to execute?

– Program representations
• Java interclass graph
• Dealing with unanalyzed libraries

– Experimental validation

TestingOOPLs-2, Sp06 © BGRyder 2

Regression Testing
• Keep a set of test cases, used to test program after

substantial change
– Test case - program input and expected output
– Test suite - set of test cases
– Adequacy is assessed by coverage metrics (usually branches or

statements covered)

• P’ a modified version of P, T test suite, info about
testing P with T are available during regression
testing of P’
– Regression test selection problem - What to retest from T?
– Test suite augmentation problem - What new tests are needed?

2

TestingOOPLs-2, Sp06 © BGRyder 3

Selective Regression Testing

• Goal - minimize number of tests needed using
information about changed code

• Inputs:
– P, T, Coverage of T in P --> Coverage matrix
• Records edges covered by test t in T on P

– P, P’, Dangerous (affected) entities
• Given program construct e in P where P(j) is P executed

with input j. e is dangerous, if for each input j causing P
to cover e, P(j) and P’(j) may differ in behavior

TestingOOPLs-2, Sp06 © BGRyder 4

Selective Regression Testing
• Rothermel and Harrold intraprocedural algorithm
– Algorithm for comparing control flow graphs before and

after code changes to find tests that exercise changed
code

– CFG edges were considered potential dangerous entities
• Parallel traversal of CFG(P) and CFG(P’); when targets of like-

labeled edges differed, then edge was called dangerous
• Use coverage matrix to find tests that will traverse the dangerous

edges, to comprise T’.
– Interprocedural version of the algorithm exists also

based on code comparisons in the order of static
execution path traversal of call sites

G. Rothermel, M.J. Harrold, “A Safe, Efficient Regression
Test Selection Technique, ACM TOSEM, vol 6, no 2, April 1997

3

TestingOOPLs-2, Sp06 © BGRyder 5

Example of Previous Algm

“Regression Test Selection for Java Software”,M.J. Harrold,
J. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha, S.A.
Spoon, S. Gujarathi, OOPSLA’01

TestingOOPLs-2, Sp06 © BGRyder 6

Approach for Java
• Use same 3-phase approach
– Construct graph representation
– Find dangerous edges (through comparison)
– Based on coverage matrix (observations), select

tests to cover dangerous edges
• Program considered to be in 2 parts
– Analyzed part and external (e.g., unchanged

library) part of program
• External codes are used by program but not modified

4

TestingOOPLs-2, Sp06 © BGRyder 7

Assumptions
• Reflection not used on any component of analyzed

part (includes Java.lang.Class)
– Why? Too hard to analyze change effects

• Unanalyzed code has no knowledge of analyzed
code
– That is, no call-backs can occur, but user may extend

library classes
• Test runs are deterministic and repeatable

• Guarantees coverage info independent of run
• Guarantees same results from a test that does not execute

change-affected parts of the code.
• Requires repeatability of multi-threaded codes

TestingOOPLs-2, Sp06 © BGRyder 8

Java Interclass Graph (JIG)
• New representation for Java programs
– Intuitively, a set of CFGs connected by

call/return edges adjusted for polymorphic calls
and with explicit embedded control-flow due to
exceptions
• Has variable and object type info
• Analyzed methods
• Calls from analyzed methods to other analyzed

methods or unanalyzed methods
• Calls from unanalyzed methods to analyzed methods
• Exception handling info

5

TestingOOPLs-2, Sp06 © BGRyder 9

Information in JIG
• Encode primitive types in variable names so type changes

will result in changes at use sites
• Encode class hierarchy in globally qualified names of classes

and methods
• Call sites become call node plus return nodes with a

connecting path edge
– If calls an analyzed method, then have a call edge from

the call to the method entry (polymorphic --by CHA--
calls are attached to all possible called methods)

• Unanalyzed methods are represented by collapsed CFG
with path edge from entry to exit

TestingOOPLs-2, Sp06 © BGRyder 10

Example

New method B.m() inserted. Call at stmt * has changed target.
so corresponding edge is dangerous.

“Regression Test Selection for Java Software”,M.J. Harrold,
J. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha, S.A.
Spoon, S. Gujarathi, OOPSLA’01

6

TestingOOPLs-2, Sp06 © BGRyder 11

More Details
• Possible interactions through calls to analyzed code

from the unanalyzed code
– Assume happens only through polymorphism an overriding of

unanalyzed method by analyzed method
• Class entry node is connected to all public methods of a class A which

can be executed on an object of type A
– To catch changes in analyzed code that can affect such methods which are

called from unanalyzed code
– Need class entry node for any class that overrides a unanalyzed class or

inherits such an overriding function
• Default node is child of class entry node, to represent unanalyzed

methods that can be executed on objects of this type; needed to handle
additions or deletions of overriding method definitions

• Use a previously developed try-catch-finally
representation of control flow due to exception
handling

TestingOOPLs-2, Sp06 © BGRyder 12

ExampleA, unanalyzed

B, analyzed

C

Deleted C.bar() and added B.bar().
What if deleted C.bar() and added nothing?
 Now C inherits A.bar() represented by default.

“Regression Test Selection for Java Software”,M.J. Harrold,
J. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha, S.A.
Spoon, S. Gujarathi, OOPSLA’01

7

TestingOOPLs-2, Sp06 © BGRyder 13

Putting things together
• Analysis algorithm traverses JIGs in parallel and

identifies dangerous edges
• Node equivalence is diff for statements or label diff for non-

statements
• Algorithm is essentially same as in TOSEM article, with

additions to handle new graph constructs
• Instrumentation using JVMPI of both edges and method

targets of calls
• Need to map observed edges to edges in JIG, including calls from

unanalyzed methods and exception raising paths
– If e is call from an unanalyzed method with analyzed class receiver then,

Either the target is an analyzed class entry node, OR the class default node,
in which case the call is mapped to all new instance creation statements for
the class

TestingOOPLs-2, Sp06 © BGRyder 14

Test Suite Reduction
• Four Java programs, each with several

versions with associated test suites
– Siena - internet-based event notification system
– Jedit - text editor
– Jmeter - desktop application for load testing
– RegExp - GNU library for parsing regular expressions

• Measured reduction in size of regression
suite needed; inconclusive results

