
You are logged in as STEPHEN EDWARDS (LOGOUT)

Home ⟩ CS 5314 F14 ⟩ General ⟩ Prolog commenting

CS 5314 Programming Languages

Prolog Commenting
Basics

Prolog supports both multi‑line and single‑line comments.

Multi‑line comments use C‑style comment delimiters:

Note that SWI‑Prolog allows /*...*/ delimiters to be nested inside each other, something
that C (and the Prolog ISO standard) do not. You're welcome to write nested multi‑line
comments in class, however, since we are using SWI‑Prolog.

For single‑line comments, Prolog uses the percent sign (%) as the comment delimiter:

Documenting Predicates
For documenting predicates, we will use a Prolog adaptation of Javadoc‑style comments.
Place the comment for a predicate above the first fact or rule for that predicate:

First, notice that we cannot determine the argument names, argument types, or parameter
modes just by looking at the facts and rules defining the predicate, since these are not
explicitly declared in Prolog. As a result, the predicate documentation must begin with one
a declaration header that defines the argument names, types, and modes. This declaration
header includes one or more lines that show alternative instantiation patterns for a
predicate‑‑that is, indicating different ways the predicate may be called with variables or
with bound values in different parameter positions. Each line should use the same formal
parameter names for the arguments appearing in the predicate. Arguments can also
include a colon (:) and type specifier to indicate the expected type of that parameter.

Typically, arguments are usually one of the following:

+ArgName

A bound value, which is often considered an incoming value ("in" mode) provided by the
caller.

-ArgName

/* This is
a multiline
comment. */

% This is a single line comment.

/**
 * concat(+List1 : list, ?List2 : list, ?List3 : list).
 * concat(?List1 : list, ?List2 : list, +List3 : list).
 *
 * Succeeds if the third list is the concatenation of the first two.
 *
 * @param List1 The first (left) list to join.
 * @param List2 The second (right) list to join.
 * @param List3 The list containing all the elements of List1
 * followed by all the elements of List2.
 */
concat([], List, List).
concat([Head | Tail], List, [Head | Rest]) :-
 concat(Tail, List, Rest).

NAVIGATION
Home

My profile

Current course

CS 5314 F14

Participants

Reports

General

My courses

SETTINGS
Page module
administration

Course administration

Switch role to...

My profile settings

Site administration

Search

My home

Piazza course
discussion area

CS 5314
Syllabus

Grades

News forum

Prolog
resources

Prolog
commenting

Program
grading criteria

Login to Web‑
CAT

Edit settings
Locally assigned
roles
Permissions
Check permissions
Filters
Logs
Backup
Restore

1
2
3

1

1
2
3
4
5
6
7
8
9
10
11
12
13
14

http://moodle.cs.vt.edu/user/profile.php?id=2
http://moodle.cs.vt.edu/login/logout.php?sesskey=kPSUCB0vyG
http://moodle.cs.vt.edu/
http://moodle.cs.vt.edu/course/view.php?id=269
http://moodle.cs.vt.edu/mod/page/view.php?id=32415
http://moodle.cs.vt.edu/
http://moodle.cs.vt.edu/course/view.php?id=269
http://moodle.cs.vt.edu/user/index.php?id=269
http://moodle.cs.vt.edu/my
http://moodle.cs.vt.edu/my/
http://moodle.cs.vt.edu/mod/lti/view.php?id=32457
http://moodle.cs.vt.edu/mod/page/view.php?id=32409
http://moodle.cs.vt.edu/mod/url/view.php?id=32538
http://moodle.cs.vt.edu/mod/forum/view.php?id=32410
http://moodle.cs.vt.edu/mod/page/view.php?id=32413
http://moodle.cs.vt.edu/mod/page/view.php?id=32415
http://moodle.cs.vt.edu/mod/page/view.php?id=32416
http://moodle.cs.vt.edu/mod/url/view.php?id=32417
http://moodle.cs.vt.edu/course/modedit.php?update=32415&return=1&sesskey=kPSUCB0vyG
http://moodle.cs.vt.edu/admin/roles/assign.php?contextid=47219
http://moodle.cs.vt.edu/admin/roles/permissions.php?contextid=47219
http://moodle.cs.vt.edu/admin/roles/check.php?contextid=47219
http://moodle.cs.vt.edu/filter/manage.php?contextid=47219
http://moodle.cs.vt.edu/report/log/index.php?chooselog=1&id=269&modid=32415
http://moodle.cs.vt.edu/backup/backup.php?id=269&cm=32415
http://moodle.cs.vt.edu/backup/restorefile.php?contextid=47219

An unbound value, which means an unbound variable would be supplied by the caller to
receive an outgoing value ("out" mode).

?ArgName

A value that may be either bound or unbound (or even partially bound), which means
the caller may supply either a known value or an unbound variable. The argument can
be treated as either incoming or outgoing, depending on what the caller has supplied.

Following the declaration header (and separated by a blank line), a normal Javadoc‑style
description of what the predicate does should be provided in one or more paragraphs. As
with Javadoc, be sure the first sentence in the predicate's description is a good single‑
sentence summary. Additional sentences can provide more detail.

Following the description, use Javadoc @param tags to define the meaning/interpretation of
each argument. Other Javadoc tags can be used as well where needed. Note that the
@return tag is typically not used, since all predicates either succeed or fail, and the
description should indicate when this is so.

Adding Test Cases
Test cases can be added to predicate headers as "examples":

In the examples above, you can see that each test case (or example) starts with a goal
introduced by ?-. Goals may be written across multiple lines, as long as continuation lines
are indented further than the ?‑ (use spaces instead of tabs!).

The expected results for each goal are written immediately following the goal, and
continue up to the next blank line or the next goal. Expected results take one of three
forms:

A comma‑separated list of one or more solutions
When variables are used in a goal, the expected results appearing after the goal should
contain a list of one or more solutions separated by commas. Each solution is a list of
Variable = Value pairs giving the value for each unbound variable listed in the Prolog

/**
 * concat(+List1 : list, ?List2 : list, ?List3 : list).
 * concat(?List1 : list, ?List2 : list, +List3 : list).
 *
 * Succeeds if the third list is the concatenation of the first two.
 *
 * @param List1 The first (left) list to join.
 * @param List2 The second (right) list to join.
 * @param List3 The list containing all the elements of List1
 * followed by all the elements of List2.
 *
 * Examples:
 *
 * ?- concat([a], [a], [a, b, c]).
 * fail
 *
 * ?- concat([a], [b, c], [a, b, c]).
 * true
 *
 * ?- concat([a], [b, c], C).
 * [C = [a, b, c]]
 *
 * ?- concat(A, [b, c], [a, b, c]).
 * [A = [a]]
 *
 * ?- concat([a], B, [a, b, c]).
 * [B = [b, c]]
 *
 * ?- concat(A, B, [a, b, c]).
 * [A = [], B = [a, b, c]],
 * [A = [a], B = [b, c]],
 * [A = [a, b], B = [c]],
 * [A = [a, b, c], B = []]
 */
concat([], List, List).
concat([Head | Tail], List, [Head | Rest]) :-
 concat(Tail, List, Rest).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Moodle Docs for this page

You are logged in as Stephen Edwards (Logout)

goal. A separate list of variable/value pairs should be provided for each distinct solution
your predicate can generate. Not that neither the order of the solutions in the output
section nor the order of the variables within a solution (if the goal contains more than
one unbound variable) matter in the comparison.

true

If the goal contains no unbound variables but should still succeed, list true as the
expected result. An empty output section will be interpreted the same as true.

fail

If the goal has no solution, simply list fail (or false) as the expected output.

As can be seen from the examples, whitespace in expected results (and in goals) can be
used freely. You can break single goals over multiple lines, as long as they are indented.
The expected result begins on the first line following the end of the goal, and can also
spread over multiple lines. The expected result ends on the first blank line, or when the
next goal begins, which ever comes first (no indentation on continuation lines required).

Other Comments in Your Code
JavaDoc comments are "public" documentation of the externally accessible features of your
modules. Often, you may also wish to include "internal" (that is, private) documentation
that is only useful to someone reading the source code directly. Any comment that does
not begin with /** is treated as private, purely for someone with access to the source
code. You are free to use such comments where ever you like to improve the readability of
your code, but ...

Internal Comments Are the Documentation Technique of
Last Resort

Choose all names carefully so that a naïve reader's first interpretation will always be right.
Do not choose names that might mislead someone about what a predicate is supposed to
do, or what information a variable holds. Choosing poor names or convoluted logic
structure and then trying to explain it in lengthy comments does little to improve
readability. This is doubly true for predicates, because half the time a reader will see your
predicate name where it is called, not when they are reading your predicate itself. If it is
not immediately clear what the predicate does, that affects the readability of all the code
calling this predicate, no matter how many comments you put in the predicate itself.

Strive to write code that is clear and understandable on its own, simply by virtue of the
names you have chosen and the structure you use. If you feel you have to add an internal
comment to explain something, ask yourself what needs explaining. If you need to explain
what a name refers to or how you intend to use it, consider choosing a better name. If you
have to explain a complex series of subgoals or some other convoluted structure, ask
yourself (or a TA) if there is a better way. Only after considering these alternatives should
you add descriptive comments.

Also, remember that redundant comments that add nothing beyond the obvious are worse
than no documentation, so don't write them.

For Experts
The Javadoc‑style commenting conventions described here (except for examples used as
test cases) are a slightly simplified version of PlDoc format, the Prolog version of Javadoc.
You can read more about PlDoc on the SWI‑Prolog PlDoc Documentation page. The
examples/test cases here are inspired by Python‑style doctest comments, and are not a
standard component of PlDoc, however.

Last modified: Monday, 6 October 2014, 9:24 AM

http://docs.moodle.org/24/en/mod/page/view
http://moodle.cs.vt.edu/user/profile.php?id=2
http://moodle.cs.vt.edu/login/logout.php?sesskey=kPSUCB0vyG
http://www.swi-prolog.org/pldoc/package/pldoc.html

CS 5314 F14

http://moodle.cs.vt.edu/course/view.php?id=269

