Formal Languages - 2

- Context-free PLs
- Grammars
- Derivation
- Parsing and parse trees
- Ambiguity
- Precedence and Associativity
- Deterministic parsing techniques
- TD parsing - LL(1)
- First and Follow sets
- Parse table construction

Context-free PLs

- Describe most of the constructs in real PLs
- Form of rules
- Each Ihs contains one nonterminal
- Each rhs contains a sequence of terminals and/or nonterminals
- PLs describable by context-free grammars are recognized by push-down automata (analogous to an FSA with a stack)

Context-free Grammars

- Can be used to generate correct sentences in the PL (derivation)
- Can be used to recognize syntactically correct sentences in the PL (parse)
- Can be automated efficiently in a compiler (LL or LR parsing)
- Is insufficient to describe all constructs of a real PL
- E.g., type checking with declaration

Derivation

1 <letter>::= a|b|c|d|e|f|g|h|i|j|k||m|n|o|p|q|r|s|t|u|v|w|x|y|z 2 <digit>::: $0|1| 2|3| 4|5| 6|7| 8 \mid 9$
3 <identifier> ::= <letter> | <identifier> <letter> | <identifier> <digit>
$4\langle 0$-assign-stmt> ::= <identifier> $=0$
Can we generate $\times 2=0$ from these rules?
$\langle 0$-assign-stmt> $\rightarrow 4$ <identifier> $=0$ sentential form
$\rightarrow 3 c \quad$ <identifier><digit> $=0$
$\rightarrow 3 a \quad$ <letter> <digit> $=0$
$\rightarrow 1 \times\langle$ digit> $=0$
$\rightarrow 2 \quad \times 2=0 \quad$ sentence
YES! leftmost or canonical derivation.

Parse

$1<l e t t e r>::=a|b| c|d| e|f| g|h| i|j| k| ||m| n|o| p|q| r|s| t|u| v|w| x|y| z$
2 ＜digit＞：：＝ $0|1| 2|3| 4|5| 6|7| 8 \mid 9$
3 ＜identifier＞：：＝＜letter＞｜＜identifier＞＜letter＞｜＜identifier＞＜digit＞ 4 〈0－assign－stmt＞：：＝＜identifier＞＝ 0
Can we recognize $\times 2=0$ as belonging to this PL？
$x^{2}=0 \rightarrow$＜letter＞2 $=0 \quad$ rule 1
\rightarrow＜identifier＞ $2=0 \quad$ rule $3 a$
\rightarrow 〈identifier〉digit＞$=0$ rule 2
\rightarrow＜identifier〉 $=0 \quad$ rule $3 c$
\rightarrow＜0－assign－stmt＞rule 4
A parse of the sentence $\times 2=0$ ．

Parse Tree

$x 2=0 \rightarrow$＜letter＞ $2=0 \quad$ rule 1
\rightarrow＜identifier＞2 $=0 \quad$ rule $3 a$
\rightarrow＜identifier＞＜digit＞$=0$
\rightarrow 〈identifier〉＝ $0 \quad$ rule $3 c$
\rightarrow＜0－assign－stmt＞rule 4

In parse tree，each internal node is a nonterminal；its children are the rhs of a rule for that nonterminal．Frontier of the tree is a sentence or valid PL construct．

Grammars are not Unique

1 <letter>::= a|b|c|d|e|f|g|h|i|j|k||m|n|o|p|q|r|s|t|u|v|.|c| $w|x| y \mid z$
2 <digit>::= $0|1| 2|3| 4|5| 6|7| 8 \mid 9$
3' <id> ::= <letter> | <id> <letterordigit>
4’ <0-assign-stmt> ::= <id> = 0
5’ <letterordigit> ::= <letter> | <digit>
This grammar generates the same language (i.e, set of trees whose frontiers are the same), but has different parse trees than the previous grammar.

Example

2nd grammar tree
1st grammar tree

Many grammars can correspond to 1 PL, but only 1 PL should correspond to any useful grammar!

Definitions - Review

- Grammar
- <finite set of terminals, non-terminals, production rules, special symbol>
- Context-free grammar
- corresponds to PLs whose rules have only 1 nonterminal on the Ihs
- Sentence
- a finite sequence of terminals, constructed according to the rules of the grammar for that PL
- Sentential form
- a finite sequence of terminals and non-terminals, constructed according to the rules of the grammar for that PL
- Derivation
- A step by step procedure that substitutes righthandsides of productions for the nonterminal on their left, eventually leading to a sequence of terminals that is a sentence in a PL.
- Parse (basically a reverse derivation)

Ambiguity in PL Definition

$\begin{aligned} 1 G & ::=E \\ E & ::=E-E\left|E^{*} E\right| I\end{aligned}$
$5 I::=a|b| c|d| e|f| g|h| i|j| k| | m|n| o|p| q|r| s|+|u| v| w|x| y \mid z$ $G \rightarrow 1$
$\rightarrow 3$
E * E
$\rightarrow 4$
$\rightarrow 5$
I*E
\rightarrow - x
$\rightarrow 2 \quad x^{*} E-E$
$\rightarrow 4 \quad x^{*} I-E$
$\rightarrow 5 \quad x^{*} y-E$
$\rightarrow 4 \quad x^{*} y-I$
$\rightarrow 5 \quad x^{*} y-z$

Ambiguity in PL Definition

$$
\begin{aligned}
1 G & ::=E \\
E & ::=E^{2}-E\left|E^{*} E\right| I
\end{aligned}
$$

$$
5 \text { I ::=a|b|c|d|e|f|g|h|i|j|k|||m|n|o|p|q|r|s|t|u|v|w|x|y|z. }
$$

$$
G \rightarrow 1
$$

$$
\rightarrow 2 \quad E-E
$$

$$
\rightarrow 3
$$

$$
\rightarrow 4
$$

$$
\rightarrow 5
$$

$$
\rightarrow 4
$$

$$
\rightarrow 5
$$

$$
\rightarrow 4 \quad x^{*} y-I
$$

$$
\rightarrow 5 \quad x^{*} y-z
$$

Comparison

Tree 1:

Tree 2:

Which tree is correct?
Can we rewrite the grammar to only generate one of them?

Ambiguity

- If there are 2 different canonical derivations (or alternatively, 2 parse trees) for the same sentence then the grammar is ambiguous
- Solution
- Change grammar to reflect operator precedence i.e., $X * Y-Z$ means $((X * Y)-Z)$
- There is no algorithm which can tell if an arbitrary context-free grammar is ambiguous
- Also no algorithm to tell if 2 arbitrary contextfree grammars generate the same language
- But can tell if 2 regular languages are equivalent!

A Better Grammar

$G::=E$
$E::=S \mid E-S$
$S:=I \mid S * I$
$I::=a|b| c|d| e|f| g|h| i|j| k| ||m| n$ |o|p|q|r|s|†|u|v|w|x|y|z

Note: since S is operand of - operation, this forces * to have higher precedence than -.

Associativity in the Grammar

$S::=I \mid S^{*} I$ $I::=a|b| c|d| e|f| g|h| i|j| k| ||m| n$ |o|p|q|r|s|t|u|v|w|x|y|z

How to parse $x+y+z$?
Tree shows that + is left associative because E's rule is left recursive.

Right Associativity

G::= E
$E::=S^{\wedge} E \mid S$
$S::=0|1| 2|3| 4|5| 6|7| 8 \mid$

What is $2^{\wedge} 3^{\wedge} 4$?
8^{4} or $2^{81 ?}$

TD Parsing

Elimination of left recursion to prevent infinite loops in the parse.
$E \rightarrow E \alpha \mid \beta \Longrightarrow E \rightarrow \beta A$ $A \rightarrow \alpha A \mid \varepsilon$
Example:
$S \rightarrow E \quad S \rightarrow E$
$E \rightarrow E+T \quad E \rightarrow T A$
$\mathrm{E} \rightarrow \mathrm{T} \longrightarrow A \rightarrow+\mathrm{T} \mid \varepsilon$
$\mathrm{T} \rightarrow$ id $\quad \mathrm{T} \rightarrow$ id
Can also left factor the grammar removing shared prefixes of right-hand-sides.

Parse Tree

TD Parsing

- Problem: predicting which nonterminal to expand next, from a leading string of symbols
- Idea: generate parse tree top down so its frontier is always a sentential form
- Use First and Follow sets to understand the shape of sentential forms possibly generated by the grammar

See algm in ASU Fig 4.14, p 187

How to mechanize?

- Define α to be string of non-terminals and terminals
- First(α) is the set of terminals that begin strings derivable from α.
If $\alpha \rightarrow \vec{\rightarrow}$, then ε is in First (α).
- Follow (A) is the set of terminals that can appear directly to the right of A in a sentential form
$S \xrightarrow{*} \alpha A a \beta$ means a is in Follow(A).
If A can be rightmost symbol in a sentential form, that is,
$\mathrm{X} \xrightarrow{*} \alpha \mathrm{~A} \delta$ where $\delta \xrightarrow{*} \varepsilon$, then
Follow $(X) \subseteq$ Follow(A)because whatever can follow an X can follow an A too.

Example

- $\operatorname{First}(S)=\operatorname{First}(E)=\operatorname{First}(T)=\{i d\}$
- First $(A)=\{+, \varepsilon\}$
- Follow $(S)=\operatorname{Follow}(E)=\operatorname{Follow}(A)=\{\$\}$
- Follow $(T)=\{+, \$\}$

$$
\begin{aligned}
& S \rightarrow E \\
& E \rightarrow T A \\
& A \rightarrow+T A \mid \varepsilon \\
& T \rightarrow i d
\end{aligned}
$$

LL(k) Grammars

- Can choose next production to expand by during TD phase, by looking k symbols ahead into input
- Use First sets to choose production
- Use Follow sets to handle ε cases

Example: LL(1)

Ambiguous or left recursive grammars result in multiply defined entries in table - a problem!

First(S) $=\operatorname{First}(E)=\operatorname{First}(T)=\{i d\}$
First(A) $=\{+, e\}$
Follow $(S)=\operatorname{Follow}(E)=\operatorname{Follow}(A)=\{\$\}$
Follow $(T)=\{+, \$\}$

