Formal Languages - 2

- Context-free PLs
- Grammars
 - Derivation
 - Parsing and parse trees
 - Ambiguity
 - Precedence and Associativity
- Deterministic parsing techniques
 - TD parsing LL(1)
 - First and Follow sets
 - Parse table construction

Formal-2, CS5314, © BGRyder

Derivation	
1 <letter>:::= a b c d e f g h i j k m n o p q r s t u v w x y z 2 <digit>:::= 0 1 2 3 4 5 6 7 8 9 3 <identifier> ::= <letter> <identifier> <letter> <identifier> <digit> 4 <0-assign-stmt> ::= <identifier> = 0</identifier></digit></identifier></letter></identifier></letter></identifier></digit></letter>	
Can we generate $x^2 = 0$ from these rules? $(0-assign-stmt) \rightarrow 4$ (identifier) = 0 sentential form $\rightarrow 3c$ (identifier) (digit) = 0 $\rightarrow 3a$ (letter) (digit) = 0 $\rightarrow 1 \times$ (digit) = 0 $\rightarrow 2 \times 2 = 0$ sentence VES! leftmost or canonical derivation.	
Formal-2, CS5314, © BGRyder	4

\$A	id+id+id\$ id+id+id\$ id+id\$ +id+id\$ id+id\$ +id\$	$S \rightarrow E$ $E \rightarrow T A$ $T \rightarrow id$ $A \rightarrow + T A$ $T \rightarrow id$ $A \rightarrow + T A$ $T \rightarrow id$ $A \rightarrow \varepsilon$	$E \rightarrow T A$ $A \rightarrow + T A \mid$ $T \rightarrow id$
	See alom in	ASU Fig 4.14, p 18	37

