
3/20/16	

1	

Formal Languages - 2

•  Context-free PLs
•  Grammars
–  Derivation
–  Parsing and parse trees
–  Ambiguity
–  Precedence and Associativity

•  Deterministic parsing techniques
–  TD parsing - LL(1)

•  First and Follow sets
•  Parse table construction

Formal-2, CS5314, © BGRyder 1

Context-free PLs

•  Describe most of the constructs in real PLs
•  Form of rules
–  Each lhs contains one nonterminal
–  Each rhs contains a sequence of terminals and/or

nonterminals
•  PLs describable by context-free grammars

are recognized by push-down automata
(analogous to an FSA with a stack)

Formal-2, CS5314, © BGRyder 2

3/20/16	

2	

Context-free Grammars

•  Can be used to generate correct sentences in
the PL (derivation)

•  Can be used to recognize syntactically correct
sentences in the PL (parse)
–  Can be automated efficiently in a compiler (LL or LR

parsing)
–  Is insufficient to describe all constructs of a real PL

•  E.g., type checking with declaration

Formal-2, CS5314, © BGRyder 3

Derivation
1 <letter>::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z
2 <digit>::= 0|1|2|3|4|5|6|7|8|9
3 <identifier> ::= <letter> | <identifier> <letter> | <identifier> <digit>
4 <0-assign-stmt> ::= <identifier> = 0

Can we generate x2 = 0 from these rules?
<0-assign-stmt> →4 <identifier> = 0

 →3c <identifier> <digit> = 0
 →3a <letter> <digit> = 0
 →1 x <digit> = 0
 →2 x 2 = 0

YES! leftmost or canonical derivation.

Formal-2, CS5314, © BGRyder 4

sentence

sentential form

3/20/16	

3	

Parse
1 <letter>::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z
2 <digit>::= 0|1|2|3|4|5|6|7|8|9
3 <identifier> ::= <letter> | <identifier> <letter> | <identifier> <digit>
4 <0-assign-stmt> ::= <identifier> = 0
Can we recognize x2 = 0 as belonging to this PL?

 x2 = 0 → <letter> 2 = 0 rule 1
 → <identifier> 2 = 0 rule 3a
 → <identifier><digit> = 0 rule 2
 → <identifier> = 0 rule 3c
 → <0-assign-stmt> rule 4

A parse of the sentence x2 = 0.

Formal-2, CS5314, © BGRyder 5

Parse Tree
x2 = 0 → <letter> 2 = 0 rule 1

 → <identifier> 2 = 0 rule 3a
 → <identifier><digit> = 0 rule 2
 → <identifier> = 0 rule 3c
 → <0-assign-stmt> rule 4

Formal-2, CS5314, © BGRyder 6

<0-assign-stmt>

<identifier> = 0

<identifier> <digit>

2 <letter>

x

In parse tree, each internal
node is a nonterminal; its
children are the rhs of a rule
for that nonterminal. Frontier
of the tree is a sentence or
valid PL construct.

3/20/16	

4	

Grammars are not Unique

1 <letter>::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|
w|x|y|z

2 <digit>::= 0|1|2|3|4|5|6|7|8|9
3’ <id> ::= <letter> | <id> <letterordigit>
4’ <0-assign-stmt> ::= <id> = 0
5’ <letterordigit> ::= <letter> | <digit>
This grammar generates the same language (i.e, set of trees

whose frontiers are the same), but has different parse
trees than the previous grammar.

Formal-2, CS5314, © BGRyder 7

Example

Formal-2, CS5314, © BGRyder 8

<0-assign-stmt>

<id> = 0

<id> <letterordigit>

2

<letter>

x

<digit>

<0-assign-stmt>

<identifier> = 0

<identifier> <digit>

2 <letter>

x

2nd grammar tree 1st grammar tree

Many grammars can correspond to 1 PL, but
only 1 PL should correspond to any useful grammar!

3/20/16	

5	

Definitions - Review
•  Grammar

–  <finite set of terminals, non-terminals, production rules, special symbol>
•  Context-free grammar

–  corresponds to PLs whose rules have only 1 nonterminal on the lhs
•  Sentence

–  a finite sequence of terminals, constructed according to the rules of
the grammar for that PL

•  Sentential form
–  a finite sequence of terminals and non-terminals, constructed according

to the rules of the grammar for that PL
•  Derivation

–  A step by step procedure that substitutes righthandsides of
productions for the nonterminal on their left, eventually leading to a
sequence of terminals that is a sentence in a PL.

•  Parse (basically a reverse derivation)

Formal-2, CS5314, © BGRyder 9

Ambiguity in PL Definition
1 G ::= E
 E ::= E - E | E * E | I
5 I ::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z
G →1 E

 →3 E * E
 →4 I * E
 →5 x * E
 →2 x * E - E
 →4 x * I - E
 →5 x * y - E
 →4 x * y - I
 →5 x * y - z

Formal-2, CS5314, © BGRyder 10

2 3 4

G

E

E * E

I

x I

y

E - E

I

z

3/20/16	

6	

Ambiguity in PL Definition
1 G ::= E
 E ::= E - E | E * E | I
5 I ::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z
G →1 E

 →2 E - E
 →3 E * E - E
 →4 I * E - E
 →5 x * E - E
 →4 x * I - E
 →5 x * y - E
 →4 x * y - I
 →5 x * y - z

Formal-2, CS5314, © BGRyder 11

2 3 4

G

E

E - E

I

x

I

z

E * E

I

y

Comparison

Formal-2, CS5314, © BGRyder 12

G

E

E * E

I

x I

y

E - E

I

z

Tree 1:
G

E

E - E

I

x

I

z

E * E

I

y

Tree 2:

Which tree is correct?
Can we rewrite the grammar to only
generate one of them?

3/20/16	

7	

Ambiguity

•  If there are 2 different canonical derivations (or
alternatively, 2 parse trees) for the same
sentence then the grammar is ambiguous
–  Solution

•  Change grammar to reflect operator precedence
i.e., X*Y-Z means ((X*Y) – Z)

•  There is no algorithm which can tell if an
arbitrary context-free grammar is ambiguous

•  Also no algorithm to tell if 2 arbitrary context-
free grammars generate the same language
–  But can tell if 2 regular languages are equivalent!

Formal-2, CS5314, © BGRyder 13

A Better Grammar

 G::= E
 E::= S | E - S

 S::= I | S * I
 I ::= a|b|c|d|e|f|g|h|i|j|k|l|m|n
 |o|p|q|r|s|t|u|v|w|x|y|z

Formal-2, CS5314, © BGRyder 14

G

E

E - S

S

S * I

I

x

y

I

z

Note: since S is operand of - operation,
this forces * to have higher precedence
than -.

3/20/16	

8	

Associativity in the Grammar
 G::= E

 E::= E + S | S
 S::= I | S * I
 I ::=a|b|c|d|e|f|g|h|i|j|k|l|m|n
 |o|p|q|r|s|t|u|v|w|x|y|z

How to parse x+y+z?
Tree shows that + is left

associative because E’s rule
is left recursive.

Formal-2, CS5314, © BGRyder 15

G

E

E + S

S

I

I E + S

I

x

y

z

((x+y) +z)

Right Associativity

G::= E
E::= S ^ E | S
S::= 0|1|2|3|4|5|6|7|8|

9

What is 2^3^4?
84 or 281?

Formal-2, CS5314, © BGRyder 16

G

E

S ^ E

2 S ^ E

3 S

4

3/20/16	

9	

Formal-2, CS5314, © BGRyder
17

TD Parsing
Elimination of left recursion to prevent infinite

loops in the parse .
 E → E α | β E → β A
 A → α A | ε

Example:
S → E S → E
E → E + T E → T A
E → T A → + T A | ε
T → id T → id
Can also left factor the grammar removing shared

prefixes of right-hand-sides.

Formal-2, CS5314, © BGRyder 18

Parse Tree

Parse tree converted from
left recursive to right recursive.

S	

E	

T	
 	
 	
 	
 	
 	
 	
 A	

id	
 +	
 	
 	
 T	
 	
 	
 A	

+	
 	
 	
 T	
 	
 	
 A	

id	
 	
 	
 ε	

id	

S	

E	
 	
 +	
 	
 	
 T	

E	
 	
 +	
 	
 	
 T	

T	

id	

id	

id	

	
 	

3/20/16	

10	

Formal-2, CS5314, © BGRyder 1
9

TD Parsing

•  Problem: predicting which nonterminal to
expand next, from a leading string of symbols

•  Idea: generate parse tree top down so its
frontier is always a sentential form
–  Use First and Follow sets to understand the shape

of sentential forms possibly generated by the
grammar

Formal-2, CS5314, © BGRyder 20

TD Stack Parser, EG
Stack Input Production
$S id+id+id$
$E id+id+id$ S → E
$A T id+id+id$ E → T A
$A +id+id$ T → id
$A T id+id$ A → + T A
$A +id$ T → id
$A T id$ A → + T A
$A $ T → id
$ $ A → ε

S → E
E → T A
A → + T A | ε

T → id

See algm in ASU Fig 4.14, p 187

3/20/16	

11	

Formal-2, CS5314, © BGRyder 2
1

How to mechanize?

•  Define α to be string of non-terminals and
terminals

•  First(α) is the set of terminals that begin
strings derivable from α.
If α ε , then ε is in First(α).

•  Follow(A) is the set of terminals that can appear
directly to the right of A in a sentential form
S α A a β means a is in Follow(A).
If A can be rightmost symbol in a sentential form, that is,

X α Α δ where δ ε, then
 Follow(X)⊆ Follow(A)because whatever can follow an X

can follow an A too.

*	

*	

*	
 *	

Formal-2, CS5314, © BGRyder
22

Example

•  First(S) = First(E) = First(T) = {id}
•  First(A) = { +, ε }
•  Follow(S) = Follow(E) = Follow(A) = {$}
•  Follow(T) = {+, $}

 S → E
 E → T A
 A → + T A | ε
 T → id

3/20/16	

12	

Formal-2, CS5314, © BGRyder
23

LL(k) Grammars

•  Can choose next production to expand by
during TD phase, by looking k symbols ahead
into input

•  Use First sets to choose production
•  Use Follow sets to handle ε cases

Formal-2, CS5314, © BGRyder 2
4

Example: LL(1)

Ambiguous or left recursive grammars result
in multiply defined entries in table – a
problem!

Nonterms\Inputs:	
 	
 id 	
 	
 + 	
 	
 $	

S 	
 	
 	
 S	
 →	
 E	

E 	
 	
 	
 E	
 →	
 T	
 A	

T 	
 	
 	
 T	
 →	
 id	

A 	
 	
 	
 	
 	
 A	
 →	
 +	
 T	
 A 	
 A	
 →	
 ε 	
 	

First(S) = First(E) = First(T) = {id}
First(A) = { +, e }
Follow(S) = Follow(E) = Follow(A) = {$}
Follow(T) = {+, $}

S	
 →	
 E	

E	
 →	
 T	
 	
 A	

A	
 →	
 +	
 	
 T	
 	
 A	
 	
 |	
 	
 ε	

T	
 →	
 id	
 	
 	

