
2/2/16	

1	

Formal-3, CS5314, © BGRyder 1	

Parsing -3
•  Deterministic table-driven parsing techniques
–  Pictorial view of TD and BU parsing
–  BU (shift-reduce) Parsing

•  Handle, viable prefix, items, closures, goto’s
•  LR(k): SLR(1), LR(1)
•  Problems with SLR
•  LALR(k) an optimization

–  Using ambiguity to an advantage

Aho, Sethi, Ullman, Compilers : Principles, Techniques and Tools
Aho + Ullman, Theory of Parsing and Compiling, vol II.

Formal-3, CS5314, © BGRyder 2	

A View During TD Parsing
S derives a γ,
a string of terminals;
X is nonterminal at top
of stack, X derives γ;
Initially
X==S, a == e, γ is input

α γ

X	

partially
constructed
parse tree

S	

2/2/16	

2	

Formal-3, CS5314, © BGRyder 3	

A View During BU Parsing

α

β
w,	 a string of terminals

partially
constructed
parse tree

A	

S	 	 	 	 	 	 	 	 	 	 	 	 	 α	 A	 w	 	 	 	 	 	 	 	 	 	 α β w,	
	
	 so	 	 β	 is	 the	 handle.	

S	 *	

rm	 rm	 →

Formal-3, CS5314, © BGRyder 4	

Intuitive Comparison

w	 x	 z	

S	

A	

LR(k) can recognize A → α knowing w, x, and Firstk (z) .
LL(k) can recognize A → α knowing only w and Firstk(x).
Therefore, the set of languages recognizable by LR(k) contain those
recognizable by LL(k).

α

2/2/16	

3	

Formal-3, CS5314, © BGRyder 5	

BU Parsing (Shift-Reduce)
Handle - part of

sentential form last
added in a rightmost
derivation.

BU parsing is
 “handle hunting”

(1) S → E
(2) E → E + T
(3) E → T
(4) T → id

Rightmost derivation
of a+b+c, handles in
red

S → E
 → E + T
 → E + id

 → E + T + id
 → E + id + id
 → T + id + id
 → id + id + id

Formal-3, CS5314, © BGRyder 6	

Shift-Reduce Parser, Example
Actions: shift, reduce, accept, error
Stack Input Action
$ id1 + id2 + id3 $ shift
$ id1 + id2 + id3 $ reduce (4)
$ T + id2 + id3 $ reduce (3)
$ E + id2 + id3 $ shift
$ E + id2 + id3 $ shift
$ E + id2 + id3 $ reduce(4)
$ E + T + id3 $ reduce (2)
$ E + id3 $ shift
$ E + id3 $ shift
$ E + id3 $ reduce (4)
$ E + T $ reduce(2)
$ E $ reduce (1)
$ S $ accept

(1) S → E
(2) E → E + T
(3) E → T
(4) T → id

2/2/16	

4	

Formal-3, CS5314, © BGRyder 7	

Problems

Shift-reduce conflicts
S → if E then S | if E then S else S | other
On stack: if E then S
Input: else
Should shift trying for 2nd alternative or reduce by

first rule?
Reduce-reduce conflicts

 if A → α and B → α both in grammar
 When α on stack, how do we know which
production to choose?

Formal-3, CS5314, © BGRyder 8	

Predictive Parsing

•  Top Down: LL(k), Bottom Up: LR(k)
•  Avoids backtracking while parsing by using

lookahead into input
•  NO cases where more than 1 action possible
•  LR parsing algorithms developed in the

mid-1970s; powerful enablers of table-driven
compilation

2/2/16	

5	

Formal-3, CS5314, © BGRyder 9	

LR(k)
•  Left to right scan parsing does a rightmost derivation

in reverse, using k symbols of lookahead into input
•  Examples

–  Simple LR - SLR(1)
•  Cheap but doesn’t always work

–  LR(k)
•  Most powerful and most expensive

•  All SLR(1) languages are also LR(1), but parsers
generated by corresponding grammars for the same
language will differ in size.

•  LR(k) catches syntax errors as early as possible in a
left-to-right scan of the input and works for most
modern PLs

Formal-3, CS5314, © BGRyder 10	

LR Parsing

•  FSA is embedded in parser which is a
Pushdown automaton

•  (topstack , input_symbol) accesses a particular
entry in the parser table
–  Shift to state s
–  Reduce by A → β
–  Accept
–  Error

•  Goto: (state, topstack) → state

2/2/16	

6	

Formal-3, CS5314, © BGRyder 11	

LR Parser
state	

symbol	 input	

state\input	

Ac9on/	 goto	 table	

stack	

Formal-3, CS5314, © BGRyder 12	

LR Parsing
•  Idea: continue to stack inputs until have handle

on top of stack and then reduce to its non-
terminal symbol

•  Viable prefix - set of prefixes of right
sentential forms which can appear on a stack
of a shift/reduce parser

•  Goto function is transition function of DFA
that recognizes viable prefixes of the grammar

•  Idea is that while a viable prefix is on top of
the stack the goto function continues the
parse towards getting a handle on top of the
stack that can be reduced

2/2/16	

7	

Formal-3, CS5314, © BGRyder 13	

Building an SLR Parser

•  Need states, goto’s, Follow sets
•  Item - rule with embedded dot

S → . E
•  Closure of item I

I ∪ {B → .γ , if A → α . B β in I}
•  States built from items and their closures

Formal-3, CS5314, © BGRyder 14	

SLR(1) Example - States

S → E I0 : S → . E
E → E + T E → . E + T
E → T E → . T
T → id Τ → . id

I1 : S → E . I2 : E → T .

 E → E . + T

I3 : T → id . I4 : E → E + . T

 T → . id
I5 : E → E + T.

Closure of
S → . E

2/2/16	

8	

Formal-3, CS5314, © BGRyder 15	

Example - Goto’s + Follow sets
goto (0, E) = 1 goto (0, id) = 3
goto (0, T) = 2 goto (1, +) = 4
goto (4, T) = 5 goto (4, id) = 3
goto ({set of items} , X) =

 closure {[A → α X . β] |
 [A → α . X β] in {set of items}}
 where X is a terminal or nonterminal

Follow(S) = {$}
Follow(E) = Follow(T) = { +, $}

S → E
E → E + T
E → T
T → id
	
	

Formal-3, CS5314, © BGRyder 16	

Rules for forming Follow Sets
ASU p 189

1.  Follow(S) contains $
2.  If A → α X β then everything in First(β)

except ε, is put into Follow (X)
3.  If A → α X or A → α X β where First(β)

contains ε, then Follow(A) is contained in
Follow(X)

2/2/16	

9	

Formal-3, CS5314, © BGRyder 17	

Example - Parser Table

si, shift to state I; r(j) reduce by rule j
States\ inputs: goto’s

 id + $ E T
0 s3 1 2
1 s4 accept
2 r(3) r(3)
3 r(4) r(4)
4 s3 5
5 r(2) r(2)

Formal-3, CS5314, © BGRyder 18	

Example
Stack input action
0 id1 + id2 $ s3
0 id1 3 + id2 $ r(4), goto on T
0 T 2 + id2 $ r(3), goto on E
0 E 1 + id2 $ s4
0 E 1 + 4 id2 $ s3
0 E 1 + 4 id2 3 $ r(4), goto on T
0 E 1 + 4 T 5 $ r(2), goto on E
0 E 1 $ accept

2/2/16	

10	

Formal-3, CS5314, © BGRyder
19	

SLR(1) Parser Rules

•  If A → α . a β is in state Ij and goto(Ij , a) is
Ir then (Ij,, a) transitions by shift r (sr)

•  If A → α . is in state Ij , set action [j,a] to
reduce A → α for all a in Follow(A)
–  Note: A != S

•  If S → E . in Ij , action (j,$) is accept
•  Any table entry not defined is error.

Formal-3, CS5314, © BGRyder 20	

Problems
•  Shift-reduce conflicts happen when Ab can

occur in some sentential form and b ∈ Follow(A).
S → L = R I0 : S → . L = R
S → R S → . R
L → * R R → . L
L → id L → . * R
R → L L →. id

 I1 : S → L . = R (1)
 R → L . (2)

In state I1 1st choice: shift when see = in input(item 1);
2nd choice: reduce on = because = in Follow(R) (item 2);
Note: S → L = R → * R = R …, but this is not a rightmost
derivation!

2/2/16	

11	

Formal-3, CS5314, © BGRyder 21	

Problems, cont.

 Can see that a rightmost derivation is:
S → L = R → L = L → L = id → * R = id →

 *L = id → * id = id

 Therefore, should reduce *R to L when see =,
not shift in order to get *R onto the stack.

Problem is that we can’t distinguish those
Follow elements corresponding to a
rightmost derivation in a specific context.

Formal-3, CS5314, © BGRyder 22	

Nomenclature in ASU

•  An item [A → β . γ] is valid for viable prefix α
β if S α A w α β γ w.
–  Means can continue towards accumulating an handle

on the stack by shifting
–  Previously, shift would have changed viable prefix *R

to nonviable prefix *R=
•  If I is set of items valid for viable prefix β

then goto(I, X) is set of items valid for viable
prefix βX where X is terminal or nonterminal

*	
rm	 rm	

2/2/16	

12	

Formal-3, CS5314, © BGRyder 23	

LR(1) Parsing

•  LR items include a lookahead symbol, (into
the input) which helps in conflict resolution

•  Need new closure rule:
–  For [A → α . B γ , a] item add [B → . δ , b] for

every b in First(γ a).

Formal-3, CS5314, © BGRyder 24	

Example
I 0 : S → . E, $ - initial item

 E → . E + T, $ - closure initial item
 E → . T, $
 E → . E + T, + - closure 1st red item
 E → . T, +
 T → .id , $ - closure 2nd red item
 T → .id, + - closure 2nd blue item

Will write these in more compact form by
combining lookaheads.

For [A → a . B g ,a] item add [B → . d ,b]
for every b in First(g a).

2/2/16	

13	

Formal-3, CS5314, © BGRyder 25	

Example, LR(1) Parser

I0:S → .E, $ I1: [goto (I0 , E)]
 E → .E + T, $/+ S → E ., $
 E → . T, $/+ S → E . + T, $/+
 T → .id , +/$ I2:[goto (I0 , T)]

I4:[goto(I1 , +)] E → T., $/+
 E → E + . T, $/+ I3: [goto (I0 , id)]
 T → . id, $/+ T → id . , $/+

I5: [goto (I4, T)]
 E → E + T . , $/+

Formal-3, CS5314, © BGRyder 26	

LR(1) Parser

•  Reduce based on lookaheads in item which are
a subset of Follow set

•  Rules similar to SLR(1)
–  Shift in Ik, [A → α . a β, b], goto (Ik, a) = Ij

–  Reduce [A → α . , b] reduce α to A on b
–  Accept [S → E., $], accept on $

2/2/16	

14	

Formal-3, CS5314, © BGRyder 27	

LALR Parsing

•  Idea: merge all states with common first
components in their LR(1) items

•  Implementation problem: need to reduce
number of states to get smaller parser table

•  Reduced size parser will perform
–  Same as LR on correct inputs (will be parsed by

LALR)
–  On incorrect inputs, LR may find error faster;

LALR will never do an incorrect shift but may do
some wrong reductions

Formal-3, CS5314, © BGRyder 28	

LALR Parsing

•  Conceptually, build LALR(1) parser from LR(1)
parser
–  Merge all states with same first components
–  Union all goto’s of these merged states (goto’s

are independent of second components)
•  Correctness of conceptual derivation
–  Can never produce a shift-reduce conflict or else

[A → α . , a] and [B →β . a γ , b] existed in some
LR(1) state

2/2/16	

15	

Formal-3, CS5314, © BGRyder 29	

Useful Ambiguous Grammars

•  Used to build compact parse trees
–  Get rid of useless nonterminal to nonterminal

productions (e.g., S-->E-->T)

•  Conflicts resolvable through desired
properties of operators (e.g., precedence)

•  Generate smaller parsers
–  Example of expression grammar

Formal-3, CS5314, © BGRyder 30	

Example

S → E I0 : S → . E I1 : goto (I0 ,E)
E → E + E E → . E + E S → E.
E → id E → . id E → E . + E
I2 : goto (I1 ,+) I3 : goto (I2 ,E) I4 : goto(I0 ,id)

 E → E + . E E → E + E . E → id .
 E → . E + E E → E . + E
 E → . id (reduce on + in Follow(E), shift on +)

Choose reduce action making + left associative; can
resolve operator precedence clashes the same way
(e.g., + versus *)

2/2/16	

16	

Formal-3, CS5314, © BGRyder 31	

Grammar Classification

Context-free Langs {0n 1n | n >= 1} union {0n 12n | n >= 1}

LR(k) ~ LR(1)

LL(k)

LALR(k)

SLR(k)

S → L = R | R
L → *R | a
R → L

