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Functional Programming 

•  Pure functional PLs 
•  S-expressions 

–  cons, car, cdr 
•  Defining functions 
•  read-eval-print loop of Lisp interpreter 
•  Examples of recursive functions 

–  Shallow, deep 
•  Equality testing 
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Pure Functional Languages 
•  Referential transparency  

–  value of an expression is independent of context 
where the function application occurs 

–  means that all variables in a function body must be 
local to that function; why? 

•  There is no concept of assignment 
–  variables are bound to values only through 

parameter associations 
–  no side effects 
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Pure Functional Languages 

•  Control flow accomplished through function application 
(and recursion) 
–  a program is a set of function definitions and their 

application to arguments 
•  Implicit storage management 

–  copy semantics, needs garbage collection 
•  Functions are 1st class values! 

–  can be returned as value of an expression or function 
application 

–  can  be passed as an argument 
–  can be put into a data structure and saved 

•  Unnamed functions exist as values 
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Pure Functional Languages 
•  Lisp designed for symbolic computing 

–  simple syntax 
–  data and programs have same syntactic form 

•  S-expression 
–  function application written in prefix form 

(e1  e2  e3 … ek) means 
•  Evaluate e1 to a function value 
•  Evaluate each of e2,…,ek to values 
•  Apply the function to these values 
(+ 1 3) evaluates to 4 
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History 

Lisp 
1950’s 
John McCarthy 

Scheme 
1975 
Guy Steele 
Gerald Sussman 

Common Lisp 

dynamic scoping 
lexical scoping 
functions as first class values 
continuations 

standardized PL 

Racket is a PL based on Scheme;  
Scheme has eager evaluation and dynamic typing 
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S-expressions 
S-expr ::= Name | Number | ( { S-expr }  ) 
Name is a symbolic constant, some string of 

chars which starts off with anything that 
can’t start a Number 

Number is an integer or real number 
–  E.g., (a (b c ) (d)) is an S-expr (or list) 
–  car selects the first element 

•  car  of this S-expr is a 
–  cdr selects the rest of the list 

•  cdr of this S-expr is ((b c) (d)) 
  

a

b
c ( )

d ( )
( )
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List Operators 

•  Car and cdr  
–  Given a list, they decompose it into first element, 

rest of list portions 
•  Cons 

–  Given an element and a list, cons builds a new list 
with the element as its car and the list as its cdr 

•  () means the empty list in Scheme  
History: 
the words car and cdr come from the first implementation of Lisp on the IBM 704. 
car stands for Contents of the Address part of Register 
cdr stands for Contents of the Decrement part of the Register 
and the implementation represented lists so that the head was a car  
and the tail was a cdr  
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Examples 

(car  ‘(a b c)) is a 
(car  ‘((a) b (c d))) is (a) 
(cdr  ‘(a b c)) is (b c) 
(cdr  ‘((a) b (c d))) is (b (c d)) 
 
Can compose these operators in a short-hand manner. 

Can reach any arbitrary list element by composition 
of car’s and cdr’s. 

(car (cdr (cdr ‘((a) b (c d)))))  =  can also be written  
      (caddr ‘((a) b (c d))) 

(car (cdr ‘( b (c d))) = 
(car  ‘((c d )) = (c d). 
 

a       () 

b 

c  
d    () () 

((a) b (c d)) 
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Examples 
(cons ‘(a b c)  ‘((a) b (c d))) is ((a b c) (a) b (c d)) 
(cons ‘d ‘(e)) is (d  e) 
(cons ‘(a b) ‘(c d)) is ((a b) c d) 
Useful predicates in Scheme.   Note the quote prevents 

evaluation of the argument as an S-expr.  
(symbol? ‘sam) returns #true   (symbol? 1) returns #f 
(number? ‘sam) returns #false (number?  1) returns #t 
(list?  ‘(a b)) returns #true   (list? ‘a) returns #f 
(null? ‘()) returns #true   (null? ‘(a b)) returns #f 
(zero? 0) returns #true   (zero? 1) returns #f 
Can compose these. 
(zero? (-  3  3)) returns #true  --note that since this 

language is fully parenthesized, there are no 
precedence problems in the expressions! 
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Scheme 

Fcn-def ::= (define (Fcn-name Param {Param}) 
   S-expr) 

Fcn-name should be a new name for a fcn. 
Param should be variable(s) that appear in the  
S-expr which is the function body. 
Fcn-def ::= ( define Fcn-name Fcn-value) 
Fcn-value::= (lambda ( Param {Param} ) S-expr) 
where Param variables are expected to appear in 

the S-expr; called a lambda expression. 



6

Functional-10, CS5314, Sp16  ©  BGRyder  11

Scheme Examples 

( define (zerocheck? x)   
 (if (= x 0) #true #false) ) 

If-expr ::= (if  S-expr0   S-expr1  S-expr2) 
where S-expr0 must evaluate to a boolean value; if 

that value is true, then the If-expr returns the 
value of S-expr1, else the value of S-expr2. 

(zerocheck? 1) returns #false, (zerocheck? (* 1 0)) 
returns #true 

 (define (notNumber x) (not (number? x))) 
Where number? returns #true if its argument is a 

number and #false otherwise; note not is a logical 
operator 
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Scheme Examples 

(define square (lambda (n) (*  n  n)) ) 
•  This associates the Fcn-name square with the 

function value (lambda (n)  (*  n  n)))  
•  Lambda calculus is a formal system for 

defining recursive functions and their 
properties  
–  Set of functions definable using lambda calculus 

(Church 1941) is same as set of functions 
computable as Turning Machines (Turing 1930’s) 
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Read-eval-print loop 
•  How does a Scheme interpreter work? 

–  Read input from user 
•  A function definition or abstraction 
•  A function evaluation 

–  Evaluate input 
•  Store function definition 
•  (e1 e2 e3 … ek) 

–  Evaluate e1 to obtain a function 
–  Evaluate e2, … , ek to values 
–  Execute function body using values from previous step 

as formal parameter values 
–  Return value of function 

–  Print return value 
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Conditional Execution 

(if  e1  e2  e3) 
(cond  (e1  h1) (e2  h2)…(en-1  hn-1) (else hn)) 
•  Cond is like a nested if-then-elseif construct 

(define (zerocheck? x)  
 (cond ((=  x  0)  #t)  (else  #f))) 

OR 
(define (zchk?  x) 
 (cond ((number? x) (zero? x)) 
   (else #f)) ) 
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Recursive Functions 
(define (len x)  (cond ((null?  x)  0)  (else (+ 1 (len (cdr  x)))))) 
 
(len  ‘(1  2)) should yield 2. 
Trace:  (len ‘(1  2))  --top level call 
  x = (1  2) 
   (len ‘(2)) --recursive call 1 
   x = (2) 
    (len ‘( ) ) -- recursive call 2 
    x = ( ) 
    returns 0 --return for call 2 
   returns (+  1  0) =1 --return for call 1 
  returns (+ 1  1) = 2 --return for top level call 

(len ‘((a) b (c  d))) returns 3 

len is a shallow   
recursive function  
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List Append  
(define (app  x  y) 
 (cond  ((null?  x)  y) 
      ((null?  y)  x) 
      (else  (cons (car x)  (app (cdr x)  y))))) 

 
(app ‘( )  ‘( ) ) yields ( ) 
(app ‘( )  ‘( 1 4 5)) yields (1 4  5) 
(app ‘(5  9) ‘(a  (4)  6)) yields (5  9  a  (4)  6)  
another shallow recursive function 

•  Can we write a function that counts the number of 
atoms in a list? (this will have to be a deep recursive 
function) 
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Atomcount Function 
(define  (atomcount  x) 

 (cond  ((null?  x)  0) 
      ((atom? x)  1) 
      (else  (+ (atomcount  (car x))  (atomcount  (cdr x)))) )) 

 
(atomcount ‘(1)) yields 1 
(atomcount  ‘(1 (2 (3)) (5)) ) yields 4 
Trace:  (atomcount ‘(1 (2 (3)) ) 
1> (+   (atomcount 1) (atomcount ‘( (2 (3)) ) )) 
 2> (+ (atomcount ‘(2 (3)) ) (atomcount ‘( ) ) ) 
  3> (+  (atomcount 2) (atomcount ‘((3)) ) etc. 
   4> (+ (atomcount ‘(3)) (atomcount ‘( )) ) 
    5> (+ (atomcount 3) (atomcount ‘( ))) 
     
    

1

atomcount 
is a deep  
recursive  
function 
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Equality Testing 
eq?   

–  predicate that can check atoms for equal values 
–  doesn’t work on lists 

eql? 
–  comparison function for lists 
(define (eql? x y) 
  (or (and (null? x) (null? y)) // null? ‘() is #true 
      (and (atom? x) (atom? y) (eq? x y))  

   //atom? ‘() is false; checking atoms 
      (and (not (atom? x)) (not (atom? y))  
            (not (null? x)) (not (null? y))//error checks 
            (eql? (car x) (car y)) 
            (eql? (cdr x) (cdr y))))) 
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Examples 

(eql?  ‘(a)  ‘(a))  yields #t 
(eql?  ‘a  ‘b) yields #f 
(eql?  ‘b  ‘b)  yields #t 
(eql?  ‘((a)) ‘(a)) yields #f 
 
(eq?  ‘a  ‘a)  yields #t 
(eq?  ‘(a)  ‘(a)) yields #f  
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How does eq? work? 
(define (f  x   y)  (list x  y)) 
so (f  ‘a  ‘a) yields (a  a). 
How does Scheme implement this? 
It binds both x and y to the same atom a. 
eq? checks that x and y both point to the 
  same place 

 
Say we called (f  ‘(a)  ‘(a)). then x and y  
don’t point to the same list at all! 
  

x 
 
y 

a 

x 
 
y ( ) a 

Scheme uses a 
reference model  
for variables 


