
1

Functional-10, CS5314, Sp16 © BGRyder 1

Functional Programming

•  Pure functional PLs
•  S-expressions

–  cons, car, cdr
•  Defining functions
•  read-eval-print loop of Lisp interpreter
•  Examples of recursive functions

–  Shallow, deep
•  Equality testing

Functional-10, CS5314, Sp16 © BGRyder 2

Pure Functional Languages
•  Referential transparency

–  value of an expression is independent of context
where the function application occurs

–  means that all variables in a function body must be
local to that function; why?

•  There is no concept of assignment
–  variables are bound to values only through

parameter associations
–  no side effects

2

Functional-10, CS5314, Sp16 © BGRyder 3

Pure Functional Languages

•  Control flow accomplished through function application
(and recursion)
–  a program is a set of function definitions and their

application to arguments
•  Implicit storage management

–  copy semantics, needs garbage collection
•  Functions are 1st class values!

–  can be returned as value of an expression or function
application

–  can be passed as an argument
–  can be put into a data structure and saved

•  Unnamed functions exist as values

Functional-10, CS5314, Sp16 © BGRyder 4

Pure Functional Languages
•  Lisp designed for symbolic computing

–  simple syntax
–  data and programs have same syntactic form

•  S-expression
–  function application written in prefix form

(e1 e2 e3 … ek) means
•  Evaluate e1 to a function value
•  Evaluate each of e2,…,ek to values
•  Apply the function to these values
(+ 1 3) evaluates to 4

3

Functional-10, CS5314, Sp16 © BGRyder 5

History

Lisp
1950’s
John McCarthy

Scheme
1975
Guy Steele
Gerald Sussman

Common Lisp

dynamic scoping
lexical scoping
functions as first class values
continuations

standardized PL

Racket is a PL based on Scheme;
Scheme has eager evaluation and dynamic typing

Functional-10, CS5314, Sp16 © BGRyder 6

S-expressions
S-expr ::= Name | Number | ({ S-expr })
Name is a symbolic constant, some string of

chars which starts off with anything that
can’t start a Number

Number is an integer or real number
–  E.g., (a (b c) (d)) is an S-expr (or list)
–  car selects the first element

•  car of this S-expr is a
–  cdr selects the rest of the list

•  cdr of this S-expr is ((b c) (d))

a

b
c ()

d ()
()

4

Functional-10, CS5314, Sp16 © BGRyder 7

List Operators

•  Car and cdr
–  Given a list, they decompose it into first element,

rest of list portions
•  Cons

–  Given an element and a list, cons builds a new list
with the element as its car and the list as its cdr

•  () means the empty list in Scheme
History:
the words car and cdr come from the first implementation of Lisp on the IBM 704.
car stands for Contents of the Address part of Register
cdr stands for Contents of the Decrement part of the Register
and the implementation represented lists so that the head was a car
and the tail was a cdr

Functional-10, CS5314, Sp16 © BGRyder 8

Examples

(car ‘(a b c)) is a
(car ‘((a) b (c d))) is (a)
(cdr ‘(a b c)) is (b c)
(cdr ‘((a) b (c d))) is (b (c d))

Can compose these operators in a short-hand manner.

Can reach any arbitrary list element by composition
of car’s and cdr’s.

(car (cdr (cdr ‘((a) b (c d))))) = can also be written
 (caddr ‘((a) b (c d)))

(car (cdr ‘(b (c d))) =
(car ‘((c d)) = (c d).

a ()

b

c
d () ()

((a) b (c d))

5

Functional-10, CS5314, Sp16 © BGRyder 9

Examples
(cons ‘(a b c) ‘((a) b (c d))) is ((a b c) (a) b (c d))
(cons ‘d ‘(e)) is (d e)
(cons ‘(a b) ‘(c d)) is ((a b) c d)
Useful predicates in Scheme. Note the quote prevents

evaluation of the argument as an S-expr.
(symbol? ‘sam) returns #true (symbol? 1) returns #f
(number? ‘sam) returns #false (number? 1) returns #t
(list? ‘(a b)) returns #true (list? ‘a) returns #f
(null? ‘()) returns #true (null? ‘(a b)) returns #f
(zero? 0) returns #true (zero? 1) returns #f
Can compose these.
(zero? (- 3 3)) returns #true --note that since this

language is fully parenthesized, there are no
precedence problems in the expressions!

Functional-10, CS5314, Sp16 © BGRyder 10

Scheme

Fcn-def ::= (define (Fcn-name Param {Param})
 S-expr)

Fcn-name should be a new name for a fcn.
Param should be variable(s) that appear in the
S-expr which is the function body.
Fcn-def ::= (define Fcn-name Fcn-value)
Fcn-value::= (lambda (Param {Param}) S-expr)
where Param variables are expected to appear in

the S-expr; called a lambda expression.

6

Functional-10, CS5314, Sp16 © BGRyder 11

Scheme Examples

(define (zerocheck? x)
 (if (= x 0) #true #false))

If-expr ::= (if S-expr0 S-expr1 S-expr2)
where S-expr0 must evaluate to a boolean value; if

that value is true, then the If-expr returns the
value of S-expr1, else the value of S-expr2.

(zerocheck? 1) returns #false, (zerocheck? (* 1 0))
returns #true

 (define (notNumber x) (not (number? x)))
Where number? returns #true if its argument is a

number and #false otherwise; note not is a logical
operator

Functional-10, CS5314, Sp16 © BGRyder 12

Scheme Examples

(define square (lambda (n) (* n n)))
•  This associates the Fcn-name square with the

function value (lambda (n) (* n n)))
•  Lambda calculus is a formal system for

defining recursive functions and their
properties
–  Set of functions definable using lambda calculus

(Church 1941) is same as set of functions
computable as Turning Machines (Turing 1930’s)

7

Functional-10, CS5314, Sp16 © BGRyder 13

Read-eval-print loop
•  How does a Scheme interpreter work?

–  Read input from user
•  A function definition or abstraction
•  A function evaluation

–  Evaluate input
•  Store function definition
•  (e1 e2 e3 … ek)

–  Evaluate e1 to obtain a function
–  Evaluate e2, … , ek to values
–  Execute function body using values from previous step

as formal parameter values
–  Return value of function

–  Print return value

Functional-10, CS5314, Sp16 © BGRyder 14

Conditional Execution

(if e1 e2 e3)
(cond (e1 h1) (e2 h2)…(en-1 hn-1) (else hn))
•  Cond is like a nested if-then-elseif construct

(define (zerocheck? x)
 (cond ((= x 0) #t) (else #f)))

OR
(define (zchk? x)
 (cond ((number? x) (zero? x))
 (else #f)))

8

Functional-10, CS5314, Sp16 © BGRyder 15

Recursive Functions
(define (len x) (cond ((null? x) 0) (else (+ 1 (len (cdr x))))))

(len ‘(1 2)) should yield 2.
Trace: (len ‘(1 2)) --top level call
 x = (1 2)
 (len ‘(2)) --recursive call 1
 x = (2)
 (len ‘()) -- recursive call 2
 x = ()
 returns 0 --return for call 2
 returns (+ 1 0) =1 --return for call 1
 returns (+ 1 1) = 2 --return for top level call

(len ‘((a) b (c d))) returns 3

len is a shallow
recursive function

Functional-10, CS5314, Sp16 © BGRyder 16

List Append
(define (app x y)
 (cond ((null? x) y)
 ((null? y) x)
 (else (cons (car x) (app (cdr x) y)))))

(app ‘() ‘()) yields ()
(app ‘() ‘(1 4 5)) yields (1 4 5)
(app ‘(5 9) ‘(a (4) 6)) yields (5 9 a (4) 6)
another shallow recursive function

•  Can we write a function that counts the number of
atoms in a list? (this will have to be a deep recursive
function)

9

Functional-10, CS5314, Sp16 © BGRyder 17

Atomcount Function
(define (atomcount x)

 (cond ((null? x) 0)
 ((atom? x) 1)
 (else (+ (atomcount (car x)) (atomcount (cdr x))))))

(atomcount ‘(1)) yields 1
(atomcount ‘(1 (2 (3)) (5))) yields 4
Trace: (atomcount ‘(1 (2 (3)))
1> (+ (atomcount 1) (atomcount ‘((2 (3)))))
 2> (+ (atomcount ‘(2 (3))) (atomcount ‘()))
 3> (+ (atomcount 2) (atomcount ‘((3))) etc.
 4> (+ (atomcount ‘(3)) (atomcount ‘()))
 5> (+ (atomcount 3) (atomcount ‘()))

1

atomcount
is a deep
recursive
function

Functional-10, CS5314, Sp16 © BGRyder 18

Equality Testing
eq?

–  predicate that can check atoms for equal values
–  doesn’t work on lists

eql?
–  comparison function for lists
(define (eql? x y)
 (or (and (null? x) (null? y)) // null? ‘() is #true
 (and (atom? x) (atom? y) (eq? x y))

 //atom? ‘() is false; checking atoms
 (and (not (atom? x)) (not (atom? y))
 (not (null? x)) (not (null? y))//error checks
 (eql? (car x) (car y))
 (eql? (cdr x) (cdr y)))))

10

Functional-10, CS5314, Sp16 © BGRyder 19

Examples

(eql? ‘(a) ‘(a)) yields #t
(eql? ‘a ‘b) yields #f
(eql? ‘b ‘b) yields #t
(eql? ‘((a)) ‘(a)) yields #f

(eq? ‘a ‘a) yields #t
(eq? ‘(a) ‘(a)) yields #f

Functional-10, CS5314, Sp16 © BGRyder 20

How does eq? work?
(define (f x y) (list x y))
so (f ‘a ‘a) yields (a a).
How does Scheme implement this?
It binds both x and y to the same atom a.
eq? checks that x and y both point to the
 same place

Say we called (f ‘(a) ‘(a)). then x and y
don’t point to the same list at all!

x

y

a

x

y () a

Scheme uses a
reference model
for variables

