
1

Functional-11, CS5314, Sp16 © BGRyder 1

Functional Programming - 2

•  Higher Order Functions
–  Map on a list
–  Apply
–  Reductions: foldr, foldl
–  Lexical scoping with let’s

Functional-11, CS5314, Sp16 © BGRyder 2

Higher Order Functions
•  Functions as 1st class values
•  Functions as arguments

(define (f g x) (g x))
 (f number? 0) yields #t
 (f len ‘(1 (2 3))) yields 2
 (f (lambda (x) (* 2 x)) 3) yields 6

•  Functions as return values
(define incr (lambda (n) (+ 1 n)))
 (incr 1) returns 2,
 incr returns #procedure:incr

2

Functional-11, CS5314, Sp16 © BGRyder 3

Built-in function map

•  Higher order function used to apply another
function to every element of a list

•  Takes 2 arguments: a function f and a list ys
and builds a new list by applying the function
to every element of the (argument) list

(define (map f ys)
 (if (null? ys) ‘()
 (cons (f (car ys)) (map f (cdr ys))))))

Functional-11, CS5314, Sp16 © BGRyder 4

Built-in function map

(define (map f ys) (if (null? ys) ‘()
 (cons (f (car ys)) (map f (cdr ys))))))

(map incr ‘(1 2 3 4)) returns (2 3 4 5)
(map incr ‘(-1 0 1)) returns (0 1 2)
(map (lambda (x) (* 2 x)) ‘(1 2 3)) returns (2 4 6)
Possible to define a new map function map2 that

takes n-ary functions and applies them to n lists,
creating a new list

(map2 + ‘(1 2 3) ‘(4 5 6)) returns (5 7 9)

3

Functional-11, CS5314, Sp16 © BGRyder 5

How map works?
(define (map f ys) (if (null? ys) ‘()
 (cons (f (car ys)) (map f (cdr ys))))))

TRACE of execution:
(map abs ‘(-1 2 -3)
 (cons (abs -1) (map abs (2 -3)))
 (cons (abs 2) (map abs (-3)))
 (cons (abs -3) (map abs ‘())
 ‘()
 (3)
 (2 3)
 (1 2 3)

(list 1 2 3)
Try stepping through the mapp definition in DrRacket.

Functional-11, CS5314, Sp16 © BGRyder 6

Using map
Define atomcnt3 which uses map to calculate the

number of atoms in a list. atomcnt3 creates a list
of the count of atoms in every sublist and apply of
+ calculates the sublist sum.

(define (atomcnt3 s) (cond ((atom? s) 1)
 (else (apply + (map atomcnt3 s)))))

(atomcnt3 ‘(1 2 3)) returns 3
(atomcnt3 ‘((a b) d)) returns 3
(atomcnt3 ‘(1 ((2) 3) (((3) (2) 1)))) returns 6

How does this function work?

4

Functional-11, CS5314, Sp16 © BGRyder 7

apply

apply is a built-in function whose first
argument f is a function and whose second
argument ys is a list of arguments for that
function

evaluation of apply applies f to ys
 (apply + ‘(1 2 3)) returns 6
 (apply zero? ‘(2)) returns #false

 (apply zero? ‘(0)) returns #true
 (apply (lambda (n) (+ 1 n)) ‘(3)) returns 4

The power of apply is that it lets your program build
an S-expression to evaluate during execution, and
then lets it be evaluated.

Functional-11, CS5314, Sp16 © BGRyder 8

foldr
•  Higher order function that takes a binary,

associative operation and uses it to “roll-up”
a list
 (define (foldr op ys id)
 (if (null? ys) id
 (op (car ys) (foldr op (cdr ys) id))))
 (foldr + ‘(10 20 30) 0) yields
 (+ 10 (foldr + (20 30) 0))
 (+ 10 (+ 20 (foldr + (30) 0)))
 (+ 10 (+ 20 (+ 30 (foldr + () 0))))
 (+ 10 (+ 20 (+ 30 0))) yields 60

Think of inserting the op where the cons constructor is
placed to build the list.

5

Functional-11, CS5314, Sp16 © BGRyder 9

 The Power of Higher Order
Functions

•  Can compose higher order functions to form
compact powerful functions

(define (sum f ys) (foldr + (map f ys) 0))
•  sum takes a function f and a list ys
•  sum applies f to each element of the list and

then sums the results
(sum (lambda (x) (* 2 x)) ‘(1 2 3)) yields 12
(sum square ‘(2 3)) yields 13

Functional-11, CS5314, Sp16 © BGRyder 10

Using foldr
(foldr append ‘((1 2) (3 4)) ‘()) yields

 (app (list 1 2) (foldr append ‘((3 4)) ‘()))
 (app (list 3 4) (foldr append ‘() ‘()))
 ‘()
 (list 3 4)
 (list 1 2 3 4)

Try this out using the stepper in DrRacket and watch how foldr
works

Ø  (list 1 2 3 4)

Defining len (list length function) from foldr.
(define (len z) (foldr (lambda (x y) (+ 1 y)) z 0))

6

Functional-11, CS5314, Sp16 © BGRyder 11

Informal Trace of len
(len ’(5 6 7)) is
(foldr (lambda (x y) (+ 1 y)) ‘(5 6 7) 0))

 ((lambda (x y) (+ 1 y)) 5 (foldr (lambda (x y) (+ 1 y)) ‘(6 7) 0))
 ((lambda…) 6 (foldr (lamb…) ‘(7) 0))
 ((lamb.. 7 (foldr (lamb…) ‘() 0))
 0
 ((lambda (x y) (+ 1 y)) 7 0) yields 1
 ((lambda (x y) (+ 1 y)) 6 1) yields 2
 ((lambda (x y) (+ 1 y)) 5 2) yields 3

3

Functional-11, CS5314, Sp16 © BGRyder 12

Fold operations

•  Operations that combine elements of an S-
expr in an ordered manner

•  foldr - right associative
–  (foldr + ‘(1 2 3) 0) can see computation tree

in which partial sums are calculated in order down
the right branch

(define (foldr op ys id)
 (if (null? ys) id
 (op (car ys) (foldr op (cdr ys) id))))

1 2 3 ()
0

3
5

6

7

Functional-11, CS5314, Sp16 © BGRyder 13

Fold operations
•  foldl - left associative, more efficient than foldr

–  (foldl + ‘(1 2 3) 0) can see computation tree in which
partial sums are calculated in order down the left branch

–  Note foldl uses less storage than foldr, because doesn’t
need to keep values in the recursive copies;

Instead it accumulates sum as it recurses downward

(define (foldl g ys u)

 (if (null? ys) u (foldl g (cdr ys) (g u (car ys)))))

1 2 3 ()
0

3
6

6

Functional-11, CS5314, Sp16 © BGRyder 14

Using foldl
(define (rev xs)
 (foldl (lambda (x y) (cons y x)) xs ‘()))
then (rev ‘(1 2 3)) will result in the following:
 order of execution:

(cons 1 ‘())
(cons 2 ‘(1))
(cons 3 ‘(2 1))

1 2 3

(1)
(2 1)

(3 2 1)

(define (foldl g ys u) (if (null? ys)
 u
 (foldl g (cdr ys) (g u (car ys)))))

8

Functional-11, CS5314, Sp16 © BGRyder 15

Comparison of Fold Functions
(define (foldr op ys id)
 (if (null? ys) id
 (op (car ys) (foldr op (cdr ys) id))))

(define (foldl g ys u)
 (if (null? ys) u (foldl g (cdr ys) (g u (car ys)))))

•  Compare underlined portions of these 2 functions

–  Can see that foldl returns the value obtained from a recursive
call to itself!

–  Foldr contains a recursive call, but it is not the entire return
value of the function

Functional-11, CS5314, Sp16 © BGRyder 16

Let expressions
Let-expr ::= (let (Binding-list) S-expr1)
Let*-expr ::= (let* (Binding-list) S-expr)
Binding-list ::= (Var S-expr) { (Var S-expr) }

•  Let and Let* expressions define a binding between

each Var and the S-expr value, which holds during
execution of S-expr1

•  Let evaluates the S-exprs in parallel (no order
specified); Let* evaluates them from left to right.

•  Both used to associate temporary values with
variables for a local computation

•  Variables declared in let’s follow lexical scoping rules

9

Functional-11, CS5314, Sp16 © BGRyder 17

Let Examples
 (let ((x 2)) (* x x)) yields 4
(let ((x 2)) (let ((y 1)) (+ x y))) yields 3
(let ((x 10) (y (* 2 x))) (* x y)) is an error because

all exprs evaluated in parallel and simultaneously
bound to the vars

(let* ((x 10) (y (* 2 x))) (* x y)) yields 200

Functional-11, CS5314, Sp16 © BGRyder 18

Let Examples

(let ((x 10)) ; causes x to be bound to 10
(let ((f (lambda (a) (+ a x)))) ;causes f to bound

to the lambda expr
 (let ((x 2)) (f 5))))

Evaluation yields (+ 5 10) = 15, NOT (+ 5 2) = 7
In dynamic scoping the answer would be 7!

(define (f z) (let* ((x 5) (f (lambda (z) (* x z))))

(map f z)))
What does this function do?

