Functional Programming - 2

- Higher Order Functions
- Map on a list

- Apply
- Reductions: foldr, foldl
- Lexical scoping with let’s

Functional-11, 55314, Sp16 © BGRyder

Higher Order Functions

- Functions as 1st class values

* Functions as arguments
(define (f g x) (g x))
(f number? O) yields #t
(f len ‘(1 (2 3))) yields 2
(f (lambda (x) (* 2 x)) 3) yields 6
* Functions as return values
(define incr (lambda (n) (+ 1 n)))
(incr 1) returns 2,
incr returns #procedure:incr

Functional-11, 55314, Sp16 © BGRyder

Built-in function map

- Higher order function used to apply another
function to every element of a list

- Takes 2 arguments: a function f and a list ys
and builds a new list by applying the function
to every element of the (argument) list

(define (map f ys)
(if (null? ys) ()
(cons (f (car ys)) (map f (cdr ys)))))

Functional-11, 55314, Sp16 © BGRyder 3

Built-in function map

(define (map f ys) (if (null? ys) ‘()
(cons (f (car ys)) (map f (cdr ys))))))

(map incr ‘(1 2 3 4)) returns (2 3 4 5)
(map incr ‘(-1 0 1)) returns (0 1 2)
(map (lambda (x) (* 2 x)) ‘(1 2 3)) returns (2 4 6)

Possible to define a new map function map2 that
takes n-ary functions and applies them to n lists,
creating a new list

(map2 + ‘(1 2 3) ‘(4 5 6)) returns (5 7 9)

Functional-11, 55314, Sp16 © BGRyder

How map works?
(define (map f ys) (if (null? ys) ‘()
(cons (f (car ys)) (map f (cdr ys))))
TRACE of execution:
(map abs ‘(-1 2 -3)
(cons (abs -1) (map abs (2 -3)))
(cons (abs 2) (map abs (-3)))
(cons (abs -3) (map abs ‘()
‘0
(€))
(2 3)
(123
(list 1 2 3)
Try stepping through the mapp definition in DrRacket.

Functional-11, 55314, Sp16 © BGRyder 5

Using map
Define atomcnt3 which uses map to calculate the
number of atoms in a list. atoment3 creates a list
of the count of atoms in every sublist and apply of
+ calculates the sublist sum.

(define (atoment3 s) (cond ((atom? s) 1)
(else (apply + (map atomcnt3 s)))))

(atoment3 ‘(1 2 3)) returns 3
(atoment3 ‘((a b) d)) returns 3
(atoment3 ‘(1 ((2) 3) (((3) (2) 1)) returns 6

How does this function work?

Functional-11, 55314, Sp16 © BGRyder 6

apply

apply is a built-in function whose first
argument f is a function and whose second
argument ys is a list of arguments for that
function

evaluation of apply applies f to ys
(apply + ‘(1 2 3)) returns 6
(apply zero? '(2)) returns #false
(apply zero? '(0)) returns #true
(apply (lambda (n) (+ 1 n)) ‘(3)) returns 4

The power of apply is that it lets your program build
an S-expression to evaluate during execution, and
then lets it be evaluated.

Functional-11, 55314, Sp16 © BGRyder 7

foldr

* Higher order function that takes a binary,
associative operation and uses it to “roll-up”
a list
(define (foldr op ys id)

(if (null? ys) id
(op (car ys) (foldr op (cdr ys) id))))
(foldr + ‘(10 20 30) 0) yields
(+ 10 (foldr + (20 30) 0))
(+ 10 (+ 20 (foldr + (30) 0)))
(+ 10 (+ 20 (+ 30 (foldr + () 0))))
(+ 10 (+ 20 (+ 30 0))) Yyields 60

Think of inserting the op where the cons constructor is
placed to build the list.

Functional-11, 55314, Sp16 © BGRyder 8

The Power of Higher Order
Functions

* Can compose higher order functions to form
compact powerful functions

(define (sum f ys) (foldr + (map f ys) 0))
- sum takes a function f and a list ys

- sum applies f to each element of the list and
then sums the results

(sum (lambda (x) (* 2 x)) ‘(1 2 3)) yields 12

(sum square ‘(2 3)) yields 13

Functional-11, 55314, Sp16 © BGRyder 9

Using foldr

(foldr append ‘((1 2) (3 4)) ‘()) yields
(app (list 1 2) (foldr append ‘(3 4)) ‘()))
(app (list 3 4) (foldr append ‘() ‘()))
‘()
(list 3 4)
(list 1 2 3 4)

Tr‘ykfhis out using the stepper in DrRacket and watch how foldr
works

> (list 123 4)

Defining len (list length function) from foldr.
(define (len z) (foldr (lambda (x y) (+ 1y)) z 0))

Functional-11, 55314, Sp16 © BGRyder 10

Informal Trace of len

(len'(® 6 7)) is
(foldr (lambda (x y)(+ 1y)) ‘(567) 0))
((lambda (x y) (+ 1 y)) 5 (foldr (lambda (x y) (+ 1 y)) (6 7) 0))
((lambda...) 6 (foldr (lamb..) (7) 0))
((lamb.. 7 (foldr (lamb..) ‘() 0))
0
((lambda (x y) (+ 1 y)) 7 0) yields 1
((lambda (x y) (+ 1 y)) 6 1) yields 2
((lambda (x y) (+ 1 y)) 5 2) yields 3
3

Functional-11, 55314, Sp16 © BGRyder 11

Fold operations

- Operations that combine elements of an S-
expr in an ordered manner

- foldr - right associative

- (foldr + (1 2 3)0) can see computation tree
in which partial sums are calculated in order down
the right branch

(define (foldr op ys id) 1 2 3 0
(if (null? ys) id 0
(op (car ys) (foldr op (cdr ys) id)))) [3

6

Functional-11, 55314, Sp16 © BGRyder 12

Fold operations

+ foldl - left associative, more efficient than foldr

- (foldl + ‘(1 2 3) 0) can see computation tree in which
partial sums are calculated in order down the left branch

- Note foldl uses less storage than foldr, because doesn’ t
need to keep values in the recursive copies:

Instead it accumulates sum as it recurses downward

(define (foldl g ys u)
(if (null? ys) u (foldl g (cdr ys) (g u (car ys)))))

Functional-11, 55314, Sp16 © BGRyder 6 13

Using foldl
(define (rev xs)
(foldl (lambda (x y) (cons y x)) xs ‘()))
then (rev ‘(1 2 3)) will result in the following:

order of execution:
1 2 3 (cons 1 ‘()

a) (cons 2 ‘(1))
21 (cons 3 ‘(2 1))
321

(define (foldl g ys u) (if (null? ys)
u
(foldl g (cdr ys) (g u (car ys)))))

Functional-11, 55314, Sp16 © BGRyder 14

Comparison of Fold Functions

(define (foldr op ys id)
(if (null? ys) id
(op (car ys) (foldr op (cdr ys) id))))
(define (foldl g ys u)
(if (null? ys) u (foldl g (cdr ys) (g u (car ys)))))

+ Compare underlined portions of these 2 functions

- Can see that foldl returns the value obtained from a recursive
call to itself!

- Foldr contains a recursive call, but it is not the entire return
value of the function

Functional-11, 55314, Sp16 © BGRyder 15

Let expressions

Let-expr ::=_(let (Binding-list) S-exprl)
Let*-expr :i= _(let* (Binding-list) S-expr)
Binding-list ::= (Var S-expr) { (Var S-expr)}

+ Let and Let* expressions define a binding between
each Var and the S-expr value, which holds during
execution of S-exprl

+ Let evaluates the S-exprs in parallel (no order
specified); Let* evaluates them from left to right.

+ Both used to associate temporary values with
variables for a local computation

* Variables declared in let's follow lexical scoping rules

Functional-11, 55314, Sp16 © BGRyder 16

Let Examples

(let ((x 2)) (* x x)) yields 4

(let ((x 2)) (let ((y 1)) (+ x y))) yields 3

(let ((x 10) (y (* 2 x))) (* x y)) is an error because
all exprs evaluated in parallel and simultaneously
bound to the vars

(let* ((x 10) (y (* 2 x))) (* x y)) yields 200

Functional-11, 55314, Sp16 © BGRyder 17

Let Examples

(let ((x 10)) : causes x to be bound to 10
(let ((f (lambda (a) (+ a x)))) :causes f to bound
to the lambda expr
(let ((x 2)(f 5))))
Evaluation yields (+ 5 10) = 15, NOT (+ 5 2) =7
In dynamic scoping the answer would be 7!

(define (f z) (let* ((x 5) (f (lambda (z) (* x 2))))
(map f 2)))
What does this function do?

Functional-11, 55314, Sp16 © BGRyder 18

