
1

Functional-12, CS5314, Sp16 © BGRyder 1

Functional Programming - 3

•  Detour: short explore of static and
dynamic scoping
–  Locally declared variables versus heap
stored variables

–  Some slides co-developed with Dr. Alex Borgida,
Rutgers University

•  Tail recursion
•  Closures
•  Streams

Functional-12, CS5314, Sp16 © BGRyder
2

Lexical Scoping

•  Block structured PLs
–  Allow for local variable declaration
–  Inherit global variables from enclosing blocks
–  Local declarations take precedence over inherited

ones
•  Hole in scope

–  Lookup for non-local variables proceeds from
inner to enclosing blocks in inner to outer order.

–  Used in Algol, Pascal, Scheme (with let), C++, C,
Java

•  Some languages historically were “flat” with no nested
procedure declarations (e.g., C)

•  Let’s in Scheme allow this construct

2

Functional-12, CS5314, Sp16 © BGRyder
3

Example program
 a, b, c: integer;
 procedure p
 c: real;
 procedure s
 c, d: integer;
 procedure r
 …
 end r;
 r;
 end s;
 r;
 s;
 end p;
 procedure r
 a: integer;
 = a, b, c;
 end r;
 …; p; r; …

 end program

Q: Which variables a, b, c are read here?

Q: Which procedure r is called here?

Q: Which procedure r is called here?

Visibility of procedures/functions is the
same as visibility of variables.

Functional-12, CS5314, Sp16 © BGRyder
4

Example - Block Structured PL
program

 a, b, c: integer;
 procedure p
 c: integer;
 procedure s
 c, d: integer;
 procedure r
 …
 end r;
 r;
 end s;
 r;
 s;
 end p;
 procedure r
 a: integer;
 = a, b, c;
 end r;
 …; p; …

 end program

nested block structure
allows locally defined
variables and functions

main.a, main.b, p.c

main.a,main.b,s.c,s.d

r.a, main.b, main.c

main.p(), p.s(), main.r()

main.p(), s.r(), p.s()
s.r(),p.s(),main.p()

main.r(), main.p()

3

Functional-12, CS5314, Sp16 © BGRyder
5

Symbol Table

•  Must support insertion, deletion, lookup
of names

•  For lexical scoping, need to use a stack
for storing attributes of a variable (to
handle hole-in-scope)

•  Need to update as enter and leave a
block at compile time (during translation)

•  Used by compiler and debugger (at
runtime)

Functional-12, CS5314, Sp16 © BGRyder
6

Example program
 a, b, c: integer;
 procedure p
 c: real;
 procedure s
 c, d: integer;
 procedure r
 …
 end r;
 r;
 end s;
 r;
 s;
 end p;
 procedure r
 a: integer;
 = a, b, c;
 end r;
 …; p; …

 end program

c main.c
integer

p.c
real

c main.c
integer

p.c
real

s.c
integer

c
main.c
integer

Q: How do these stacks become
updated as execution proceeds
in the debugger?

4

Functional-12, CS5314, Sp16 © BGRyder
7

Dynamic Scoping
•  What if declarations are entered into the

symbol table as they are encountered at
runtime?
–  Declarations are processed as they are encountered on an

execution path
–  Lookup for non-local variables proceeds from closest dynamic

predecessor to farthest
–  Or if variables are dynamically typed by their usage (as in

Scheme and Prolog)

•  Used mainly in interpreted PLs (e.g. Perl,APL)

Functional-12, CS5314, Sp16 © BGRyder
8

Example
program

 a, b, c: integer;
 procedure p
 c: real;
 procedure s
 c, d: integer;
 procedure r
 …
 end r;
 r;
 end s;
 r;
 s;
 end p;
 procedure r
 a: integer;
 = a, b, c;
 end r;
 …; p; …

 end program

Dynamic scoping
Main calls main.p() calls main.r():

c main.c
integer

p.c
real

Static scoping in main.r():

c main.c
integer

5

Functional-12, CS5314, Sp16 © BGRyder
9

Example main{
 procedure Z(){
 a: integer;
 a := 1;
 Y();
 output a;
 }//end Z;
 procedure W(){
 a: integer;
 a := 2;
 Y();
 output a;
 }//end W;
 procedure Y(){
 a := 0; /*1*/
 }//end Y;
 Z();
 W();

}//end main

Which a is modified by /*1*/ under
dynamic scoping? Z.a or W.a or both?

Functional-12, CS5314, Sp16 © BGRyder
10

Example

main calls Z,
Z calls Y,
Y sets Z.a to 0.

main{
 procedure Z(){
 a: integer;
 a := 1;
 Y();
 output a;
 }//end Z;
 procedure W(){
 a: integer;
 a := 2;
 Y();
 output a;
 }//end W;
 procedure Y(){
 a := 0; /*1*/
 }//end Y;
 Z();
 W();

}//end main

6

Functional-12, CS5314, Sp16 © BGRyder
11

Example

main calls W,
W calls Y,
Y sets W.a to 0.

Is this program legal under static
scoping? If so, which a is modified?
If not, why not?

main{
 procedure Z(){
 a: integer;
 a := 1;
 Y();
 output a;
 }//end Z;
 procedure W(){
 a: integer;
 a := 2;
 Y();
 output a;
 }//end W;
 procedure Y(){
 a := 0; /*1*/
 }//end Y;
 Z();
 W();

}//end main

Functional-12, CS5314, Sp16 © BGRyder 12

 Example main{
 procedure Z(){ /*4*/
 a: integer;
 a := 1;
 W();
 /*9*/ Y();
 output a;
 }// end Z/*10*/
 procedure W(){ /*5*/
 a: integer;
 a := 2;
 Y();
 output a;
 }//end W/*8*/
 procedure Y(){/*6*/
 a := 0;
 }//end Y/*7*/
 /*3*/ Z();

}//end main

table entry for a at:
/*3*/ empty
/*4*/ &(Z.a)
/*5*/ &(W.a), &(Z.a)
/*6*/ &(W.a), &(Z.a)
/*7*/ &(W.a), &(Z.a)
/*8*/ &(Z.a)
/*9*/ &(Z.a)
/*6*/ &(Z.a)
/*7*/ &(Z.a)
/*10*/ empty

top

7

Functional-12, CS5314, Sp16 © BGRyder 13

Two Versions of Scope

Will it evaluate to
•  (* x (lambda (a)(+ a x) 3) -->

 (* 2 ((lambda (a)(+ a 10) 3)) --> 26
or
•  (* x (lambda (a)(+ a x) 3)) -->

 (* 2 ((lambda (a)(+ a 2) 3)) --> 10

“lexical
scoping”

“dynamic
scoping”

(let ((x 10))
 (let ((f (lambda (a) (+ a x))))
 (let ((x 2))
 (* x (f 3))))

Scheme chose lexical scoping model

Functional-12, CS5314, Sp16 © BGRyder
14

Example - Scheme
((lambda (x)
 ((lambda (y)
 ((lambda (z)

 (+ x y))
 5)
 4)
 3)
evaluates to 12

(let ((x 3))
 (let ((y 4))
 (let ((z 5))

 (+ x y))))

 also evaluates to 12

(let ((x 2)) (+ x ...)) is just an abbreviation for
 ((LAMBDA (x) (+ x ...)) 2)

8

Functional-12, CS5314, Sp16 © BGRyder 15

Tail Recursive Functions

•  If the result of a function is computed
without a recursive call OR if it is the
result of an immediate recursive call,
then the function is tail recursive
–  E.g., foldl

•  Tail recursive functions are efficient,
because the result is accumulated in
one of the arguments (saves space)
–  Don’t need a stack to compute tail
recursive functions!

Functional-12, CS5314, Sp16 © BGRyder 16

Two Defns of Length function

(define (len ys)
 (if (null? ys)
 0
 (+ 1 (len (cdr ys)))))
(len '(3 4 5))

Len not tail recursive

(define (lentr ys tot)
 (if (null? ys)
 tot
 (lentr (cdr ys)
 (+ 1 tot))))
(define (len2 ys)
 (lentr ys 0))
(len2 '(3 4 5))

Lentr is Tail recursive
Tot is used to accumulate

the length calculation

9

Functional-12, CS5314, Sp16 © BGRyder 17

Tail Recursive Factorial

(define (fact n)
 (cond
 ((zero? n) 1)
 ((eq? n 1) 1)
 (else (* n
 (fact (- n 1))))))

fact is original version

(define (factor n acc)
 (cond ((zero? n) 1)

 ((eq? n 1) acc)
 (else (factor (- n 1)
 (* n acc)))))

(define (factorial n)
 (factor n 1))

factor is tail recursive

version

Functional-12, CS5314, Sp16 © BGRyder 18

Closures

•  A closure is a function value plus the
environment in which it is to be
evaluated
–  Sometimes need to include variables not
local to the function so closure can
eventually be evaluated

•  A closure can be used as a function
–  Applied to arguments
–  Passed as an argument
–  Returned as a value

10

Functional-12, CS5314, Sp16 © BGRyder
19

Closure Bindings are ‘Immortal’

•  Normally, when execution exits a let or a
function, its bindings disappear.

•  If those bindings are part of a closure
–  When the let exits they become inactive but are

not destroyed
–  They become active whenever (and wherever) the

closure is called

(let ((x 5))
 (let ((f (let ((x 10)) (lambda (y) x)))
 (list x (f 1) x (f 1)))) yields (5 10 5 10)

f is constant 10 function

Functional-12, CS5314, Sp16 © BGRyder 20

Evaluation of Closures
 (define (gg z)
 (let* ((x 2) (f (lambda(y) (+ x y)))) (map f z)))

gg is actually a closure which is (lambda (z) (map f z)) where
the defining environment is { x → 2; f → (lambda (y) (+ x y))}
we need this environment to evaluate gg.
>(square 2)
4 ; is assumed to be evaluated in the context of the empty

environment {}
>(gg ‘(1 2 3))
1. value of gg is its closure
2. closure environment is expanded by argument association with

parameter { x → 2; f → (lambda (y) (+ x y)); z → ‘(1 2 3) }
3. evaluation occurs and (3 4 5) is returned

11

Functional-12, CS5314, Sp16 © BGRyder 21

More on Evaluation of Closures

(define ff (lambda (x) (* 2 x))) ; binds ff to a
closure

If evaluate ff, the system will print something like
this:
 (lambda (a1) ...) showing its value is a closure

If evaluate (ff), the system will complain about a
missing argument

If evaluate (ff 3) the system will return 6.

Functional-12, CS5314, Sp16 © BGRyder 22

Currying, revisited
•  What’s going on?

–  We are reducing n-ary functions to n applications of
unary functions

–  Can always do this, so n-ary functions don’t add
more power to your language
+ : R x R → R, curried+ : R → (R → R)
 (define (curried+ x) (lambda (y) (+ x y)))
 ((curried+ 2) 3) yields 5
 (let ((f (curried+ 1))) (f 10)) yields 11

12

Functional-12, CS5314, Sp16 © BGRyder 23

Currying (and Closures)
>(define (mm x y) (* x y))
>mm ; returns a closure
>(mm 2) ; returns error because mm expects 2 arguments, not 1!
>(mm 2 3) ; returns 6

>(define hh (lambda (x) (lambda (y) (* x y))))
>hh ; returns (lambda (a1) ...)
>(hh 2 3) ; not called in a curried manner, one argument at a
time, returns
 hh: expects only 1 argument, but found 2
>((hh 2) 20) ; proper way to call a curried fcn of 2 args
40
>(hh 2) ; hh plus 1 argument returns a closure
 (lambda (a1) ...)

Functional-12, CS5314, Sp16 © BGRyder 24

Streams
•  A mechanism to generate an unbounded number of

elements in a sequence
•  Involves putting a function value as an element in a

list and then executing that function to produce a
sequence of values

(define (stream f n) (cons (f n) (list f))) ; encodes
value of f applied to n as first element of the list
and f as the rest of list

(define (head str) (car str)) ; head retrieves the next
value that is stored as the first element of list

(define (tail str) (cons (apply (car (cdr str))
 (list (car str))) (cdr str))) ;

tail constructs a new list with the next value as its
car and the generating function as it cdr.

13

Functional-12, CS5314, Sp16 © BGRyder 25

Example
(define (stream f n) (cons (f n) (list f)))
(define (head str) (car str))
(define (tail str)
 (cons (apply (car (cdr str))
 (list (car str))) (cdr str)))
(define (square x) (* x x))
(define ss (stream square 2))
(head ss)
>4
(head (stream (lambda(x)(* 2 x)) 5))
>10
(tail ss)
> (list 16 (lambda (a1) ...))
(head (tail ss))
>16
(head (tail (tail ss)))
>256

