
1

Intro 1, CS5314, © BG Ryder 1

CS5314:Concepts of
Programming Languages

Spring 2016

Dr. Barbara G. Ryder
J. Byron Maupin Professor of Engineering

ryder@cs.vt.edu
KWII, Room 2210

http://people.cs.vt.edu/~ryder/

Intro 1, CS5314, © BG Ryder 2

Introduction -1

•  Administrivia
•  Why study PLs?
•  Formal languages, lightly (Ch 1+2, Scott)

–  Backus Naur Form (BNF)
–  Regular expressions and finite state machines
–  Context-free grammars

•  Student background questionnaire – Due
Thursday, Jan 21st

2

Intro 1, CS5314, © BG Ryder 3

Info on Course Website
http://people.cs.vt.edu/~ryder/5314/

–  Main page has course summary, expected work,

grading, main topics, and important announcements
for everyone in the class

–  Lecture Notes page will have PDF lecture slides and
will suggest relevant textbook sections and auxiliary
materials

–  Programming assignments page will describe 3
programming assignments and due dates

–  Homework assignments page will list assigned ‘by
hand’ homeworks and after due date, answers

Intro 1, CS5314, © BG Ryder 4

Course Goals

•  To make learning new programming languages
easier by identifying common features

•  To refine understanding of basic structures of
programming languages
–  Types, control structures, data objects, naming

conventions, and binding etc.
•  To study different language paradigms

–  Functional, logic, object-oriented, scripting
–  To ensure an appropriate language is selected for a

task

3

Topics
•  PL paradigms: procedural, object-oriented, logic,

functional, scripting
•  FSAs, RE’s, context-free grammars, parsing
•  Types: conversion, coercion, equivalence, checking,

reconstruction (type-by-use), non-standard types
•  Lexical and dynamic scoping
•  Lambda calculus and functions as “first class”,

continuations
•  Advanced control flow abstractions and modes of

parameter passing
•  Data abstraction and specification
•  Models of inheritance in object-oriented languages
•  Concurrency

Intro 1, CS5314, © BG Ryder 5

Intro 1, CS5314, © BG Ryder 6

Compilation

scanner

parser

intermediate
code
generator

optimizer

code generator

Scott Ch 1.6

character stream

token stream

parse trees

abstract
syntax
trees or
intermediate
form

modified
intermediate
form

assembly code

4

Intro 1, CS5314, © BG Ryder 7

Backus Naur Form (BNF)

•  Metasymbols < > ::= |
•  Terminal symbols of the PL

–  e.g., keywords, operators
•  Nonterminal symbols

<while_stmt> ::= while <expr> do <stmt>
<identifier> ::= <letter> |
 <identifier> <digit> | <identifier> <letter>

Intro 1, CS5314, © BG Ryder 8

BNF Examples
•  letter (letter | digit) *

 <id> ::= <letter> | <id> <letter> | <id> <digit>
•  digit*

<integer> ::= <integer><digit> | <digit> | ε
•  Strings of 1’s and 0’s where all 1’s come

before all 0’s, that is, 1*0*

<str> ::= <one> <zero>
<one> ::= 1 <one> | 1 | ε
<zero> ::= 0 <zero> | 0 | ε

•  If statement
 <if_stmt> ::= if <expr> then <statement> else
<statement>

5

Intro 1, CS5314, © BG Ryder 9

Extended BNF (EBNF)

•  Nonterminals begin with capital letters or are
shown in a different font

•  {…} means repeat the enclosed 0 or more times
•  […] means the enclosed is optional
•  (…) is used for grouping, usually with the

alternation symbol |
•  If { }, [], or () are terminals in the PL being

defined, then when they are used as terminals
they must be underlined
 { } terminals, { } metasymbols

Intro 1, CS5314, © BG Ryder 10

EBNF Examples

Identifier ::= Letter { LetterorDigit }
LetterorDigit ::= Letter | Digit
Expr ::= [Expr -] Subexpr
IfStmt ::= if LogicExpr then Stmt [else Stmt]
CompoundStmt ::= begin Stmt {; Stmt} end
WhileStmt ::= while (LogicExpr) Stmt {; Stmt}
ArrayElement ::= Identifier [Identifier]
…

6

Intro 1, CS5314, © BG Ryder 11

Formally
•  A PL is a set of strings, called sentences, over

some finite alphabet of symbols, called
terminals
–  Not necessarily a finite set

•  Rules describe how to combine the terminals
into well-formed sentences in the PL - syntax

•  PL constructs are categorized by the
complexity of their descriptive rules

•  Regular expressions used to describe tokens
(atomic bits) of PLs
–  e.g., identifiers, numerical constants, keywords
–  Defined recursively
–  Recognized by a finite state automaton (FSA)

Intro 1, CS5314, © BG Ryder 12

Regular Expressions
PL construct RE Notation Language

 an empty RE { }
symbol a a {a}
null symbol ε {ε}
R,S regular exprs R | S LR ∪LS

a,b terminals a|b (alternation) {a,b}
R,S regular exprs RS LRLS
a,b terminals ab (concatenation) {ab}

7

Intro 1, CS5314, © BG Ryder 13

Regular Expressions
PL construct RE Notation Language

R,S regular exprs R* {ε }∪ LR ∪ LR LR ∪ LR LR LR …
a a* {ε , a, aa, aaa,…}
R,S regular exprs R+ LR ∪ LR LR ∪ LR LR LR ...
a a+ {a, aa, aaa,…}

Note: ε a = a ε = a
Precedence is {* +} ----concatenation ---- |

 high to low
 (all are left associative operators)

Intro 1, CS5314, © BG Ryder 14

RE Examples

1 | 2 {1,2}
1* | 2 {2, ε,1,11,111,…}
1 2* {1, 12, 122, 1222, …}
1 2* | 0+ {0,00,000,…,1,12,122,…}
(1 | 2)* {ε,1,2,12,11,21,22,…}
(0|1)* 1 Binary numbers that end in 1

8

Intro 1, CS5314, © BG Ryder 15

RE’s for PLs

•  Let letter stand for a|b|c|…|z and digit stand
for 0|1|2|3|4|5|6|7|8|9
–  letter (letter | digit) * is identifier
–  digit + is an integer constant
–  digit * . digit + is real number

•  Which identifiers are described by
–  letter (letter | digit) * ?
ABC 0C B% X1

•  Which of the following are legal real numbers
described by
–  digit * . digit + ? .5 1.5 2 4. 6.3 0.2

Intro 1, CS5314, © BG Ryder 16

Formal Language Theory
•  Offers a way to describe computation problems

formulated as language recognition problems
and prove their difficulty

•  Recognizers for languages are more complex as
the languages become more complex
–  Simple constructs correspond to FSAs

•  Keywords, numerical constants
–  More complex constructs correspond to Push-down

Automata
•  If statements, looping statements, declarations

–  Even more complex constructs correspond to more
complex automata

•  Type checking of use with declared type

9

Intro 1, CS5314, © BG Ryder 17

Finite State Automaton (FSA)

•  Recognizer of the language generated by a
regular expression

•  Described by
 <set of states, labeled transitions, start state, final state(s)>

S1

S2

S0
0

1
Recognizes the language {1, 0}

<{S0,S1,S2}, S0 ---> S1, S0, {S1,S2}>
 S0 ---> S2

0
1

start

Intro 1, CS5314, © BG Ryder 18

FSA
•  FSA accepts or recognizes an input string

iff there is a path from its start state to a
final state such that the labels on the path
are the terminals in that string
–  Empty transitions signify illegal moves; can

think of FSA going to a sink error state

 0 1
 S0 S1 S2
 S1 --- ---
 S2 --- ---

transition table

inputs:
states:

S1

S2

S0
0

1

start

10

Intro 1, CS5314, © BG Ryder 19

Example

Exponent in scientific notation:
E (+ | -) digit + | E digit +

S0 S1 S2

S3

E +, - digit

digit

digit
start

Intro 1, CS5314, © BG Ryder 20

Grammar

•  A formalism to describe the sentences of a PL
•  <set of terminals, set of non-terminals, productions, special symbol>

–  Terminals are alphabet symbols (e.g., +)
–  Non-terminals represent PL constructs (e.g., Stmt)
–  Productions are rules for forming syntactically

correct constructs
–  Special symbol tells where to start applying the rules

11

Intro 1, CS5314, © BG Ryder 21

Example
<letter>::=

 a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z
<digit>::= 0|1|2|3|4|5|6|7|8|9
<identifier> ::= <letter> | <identifier> <letter> |

<identifier> <digit>
<0-assign_stmt> ::= <identifier> = 0;

//nonterminals are {<letter>,<digit>,<0-assign_stmt>,

<identifier>}
//special symbol is <0-assign_stmt>

Intro 1, CS5314, © BG Ryder 22

Regular PLs

•  Describe the simple constructs in real PLs
•  Form of rules

–  Each righthandside is length <= 2 symbols
•  A terminal or non-terminal
•  A non-terminal followed by a terminal

•  All PLs describable by REs can be written as
regular grammars
e.g., 1 2* | 0+ N::= X | Y

 X ::= 1 | X 2
 Y ::= 0 | Y 0

