CS5314:Concepts of

Programming Languages
Spring 2016

Dr. Barbara 6. Ryder
J. Byron Maupin Professor of Engineering

KWII, Room 2210
http://people.cs.vt.edu/~ryder/

Intro 1,CS5314, © BG Ryder

Introduction -1

+ Administrivia

* Why study PLs?

* Formal languages, lightly (Ch 1+2, Scott)
- Backus Naur Form (BNF)
- Regular expressions and finite state machines
- Context-free grammars

+ Student background questionnaire - Due
Thursday, Jan 215t

Intro 1,CS5314, © BG Ryder

Info on Course Website
http://people.cs.vt.edu/~ryder/5314/

- Main page has course summary, expected work,
grading, main topics, and important announcements
for everyone in the class

- Lecture Notes page will have PDF lecture slides and
will suggest relevant textbook sections and auxiliary
materials

- Programming assignments page will describe 3
programming assignments and due dates

- Homework assignments page will list assigned 'by
hand' homeworks and after due date, answers

Intro 1,CS5314, © BG Ryder

Course Goals

* To make learning new programming languages
easier by identifying common features

* To refine understanding of basic structures of
programming languages
- Types, control structures, data objects, naming

conventions, and binding etc.

* To study different language paradigms

- Functional, logic, object-oriented, scripting

- To ensure an appropriate language is selected for a
task

Intro 1,CS5314, © BG Ryder

Topics
PL paradigms: procedural, object-oriented, logic,
functional, scripting
FSAs, RE's, context-free grammars, parsing

Types: conversion, coercion, equivalence, checking,
reconstruction (type-by-use), non-standard types

Lexical and dynamic scoping

Lambda calculus and functions as "first class”,
continuations

Advanced control flow abstractions and modes of
parameter passing

Data abstraction and specification
Models of inheritance in object-oriented languages

Concurrency
Intro 1,CS5314, © BG Ryder
Comp| |a'|'|on Scott Ch 1.6
character stream
scanner optimizer
token stream modified
parser intermediate
form
parse ftrees

intermediate code generator

code
generator

assembly code

abstract
syntax

trees or
intfermediate
form

Intro 1,CS5314, © BG Ryder

Backus Naur Form (BNF)

* Metasymbols < > SR

- Terminal symbols of the PL
- e.g., keywords, operators

* Nonterminal symbols

<while_stmt> ::= while <expr> do <stmt>
<identifiers ::= <letters |
<identifier> <digit> [<identifier> <letter>

Intro 1,CS5314, © BG Ryder

BNF Examples

- letter (letter [digit)
<id> ::= <letter> [<id> <letters [<id> <digit>
- digit"
<integer> ::= <integer><digit> [<digit> [¢
+ Strings of 1’s and O’ s where all 1’ s come
before all 0’ s, that is, 1"0"
<str> .= <one> <zero>
<one> ;= 1<one> [1] ¢
<zero> ::=0<zero> [0 [¢
+ If statement

<if_stm#> ::= if <expr> then <statement> else
<statement>

Intro 1,CS5314, © BG Ryder

Extended BNF (EBNF)

* Nonterminals begin with capital letters or are
shown in a different font

* {..} means repeat the enclosed O or more times
* [...] means the enclosed is optional

* (..) is used for grouping, usually with the
alternation symbol |

« If {},[1, or () are terminals in the PL being
defined, then when they are used as terminals
they must be underlined

{ } terminals, { } metasymbols

Intro 1,CS5314, © BG Ryder

EBNF Examples

Identifier ::= Letter { LetterorDigit }
LetterorDigit ::= Letter | Digit

Expr ::= [Expr -] Subexpr

IfStmt = if LogicExpr then Stmt [else Stmt]
CompoundStmt ::= begin Stmt {; Stmt} end
WhileStmt ::= while (LogicExpr) Stmt {; Stmt}
ArrayElement ::= Identifier [Identifier]

Intro 1,CS5314, © BG Ryder

Formally

- APL is a set of strings, called sentences, over
some finite alphabet of symbols, called
terminals
- Not necessarily a finite set

* Rules describe how to combine the terminals
into well-formed sentences in the PL - syntax

* PL constructs are categorized by the
complexity of their descriptive rules

* Regular expressions used to describe tokens
(atomic bits) of PLs
- e.g., identifiers, numerical constants, keywords
- Defined recursively
- Recognized by a finite state automaton (FSA)

Intro 1,CS5314, © BG Ryder

Regular Expressions

PL construct RE Notation Language
anempty RE {}

symbol a a {a}

null symbol g {e}

R,S regularexprs R[S Ly ULg

a,b terminals alb (alternation){a,b}

R,S regular exprs RS LyLg

a,b terminals ab (concatenation) {ab}

Intro 1,CS5314, © BG Ryder

Regular Expressions

PL construct RE Notation Language

R,S regular exprs R” {(eJULRULR Ly ULy Lg L ...
a a {¢,a, aa, aaa,..}

R,S regular exprs R* LrULg Ly ULy Ly Ly ...

a a {a, aa, aaa,..}

Note:€a=a€=a
Precedence is {* +} ----concatenation ---- |
high to low
(all are left associative operators)

Intro 1,CS5314, © BG Ryder

RE Examples

112 {1,2}
1"]2 {2,¢111111,.}
127 {1,12,122, 1222, .}

12" 0+ {0,00,000,.,1,12,122,.}
a2y {1,212,11,21,22,.}
(0|1)"1 Binary numbers that end in 1

Intro 1,CS5314, © BG Ryder

RE’s for PLs

- Let /etter stand for a|b|c|...|z and dligit stand
for 0|1|2]3]4|516|7|8]|9
- letter (letter [digit) ™ is identifier
- digit* is an integer constant
- digit *. digit * is real number
* Which identifiers are described by
- letter (letter [digit) ™ ?
ABC 0C B% X1
* Which of the following are legal real numbers
described by
- digit . digit*? 5 15 2 4. 63 0.2

Intro 1,CS5314, © BG Ryder 15

Formal Language Theory

+ Offers a way to describe computation problems
formulated as language recognition problems
and prove their difficulty

* Recognizers for languages are more complex as
the languages become more complex
- Simple constructs correspond to FSAs
* Keywords, numerical constants
- More complex constructs correspond to Push-down

Automata
+ If statements, looping statements, declarations
- Even more complex constructs correspond to more
complex automata
+ Type checking of use with declared type

Intro 1,CS5314, © BG Ryder 16

Finite State Automaton (FSA)

* Recognizer of the language generated by a
regular expression

- Described by

<set of states, labeled transitions, start state, final state(s)>

<{S0,51,S2},/S0 +-> S1, S0,{S1,S2}>

start 0 S0 -+>S2
s
AN

’ Recognizes the language {1, 0}

Intro 1,CS5314, © BG Ryder

FSA

- FSA accepts or recognizes an input string
iff there is a path from its start state to a
final state such that the labels on the path
are the terminals in that string

- Empty transitions signify illegal moves; can
think of FSA going to a sink error state

inputs:

0
start ‘ Smtse(f .s(i 1sz
AN

S1|-n e

transition table

Intro 1,CS5314, © BG Ryder

Example

Exponent in scientific notation:
E (+|-) digit* | E digit*

digit

start .7

@ E @ +, - @digif

S s

digit

Intro 1,CS5314, © BG Ryder 19

Grammar

« A formalism to describe the sentences of a PL
+ <set of terminals, set of non-terminals, productions, special symbol>

- Terminals are alphabet symbols (e.g., +)
- Non-terminals represent PL constructs (e.g., Stmt)

- Productions are rules for forming syntactically
correct constructs

- Special symbol tells where to start applying the rules

Intro 1,CS5314, © BG Ryder 20

10

Example

<letter>::=
alblc|dle[f[glhliljlk[l[m[nlolplqlris|t|ulv|w|x|y|z
<digit>:i= 0[1|2|3(4|5]6|7]8]9
<identifier> ::= <letter> | <identifier> <letters |
<identifier> <digit>
<0-assign_stmt> ::= <identifier> = O;

//nonterminals are {<letter> <digit><0-assign_stmt>,
<identifier>}

//special symbol is <0-assign_stmt>

Intro 1,CS5314, © BG Ryder

Regular PLs

- Describe the simple constructs in real PLs

* Form of rules
- Each righthandside is length <= 2 symbols

* A terminal or non-terminal
* A non-terminal followed by a terminal

+ All PLs describable by REs can be written as
regular grammars
eg.,12°[0* Nu=X|VY
Xu=1|X2
Yu=0|YO

Intro 1,CS5314, © BG Ryder

11

