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Lambda Calculus 
•  Formalism to describe semantics of 

operations in functional PLs 
–  Variables are free or bound 

•  Function definition vs function abstraction 
•  Substitution rules for evaluating functions 
•  Normal form 

–  Equivalent in descriptive power to Turing machines 
•  Substitution rules 

•  β reduction, α reduction, η-reduction 
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Lambda Calculus 
•  A theory of functions 

–  Equivalent in descriptive power to Turing machines 
•  Syntax 

Exp ::= Var | λ Var.Exp | (Exp1 Exp2) 
λx.(x z) corresponds to (lambda (x) (x z)) in Scheme 

•  How to express a function call? 
–  Use notion of substitution  
–  Substitute E for y in M, {E/y} M 

 ((λx.λy.(+ x y)) 2 3)-->((λy.(+ 2 y)) 3)--> (+ 2 3) 
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Evaluating Functions 

•  Not so easy to do 
–  if foo is (λx.  λx.x)  then (foo 2) is λx.x  not 2 

(x is a parameter of the function λx.x that is an 
argument and unrelated to x. 

–  if area is (λx.λy. (* x y)) then (area 3 y) should 
be (* 3 y) not (* y y), but 2nd result happens by 
blindly following simple substitution 

–  free/bound variables distinguish these cases 
λx.(x + y)  y is free, x is bound 
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Rules of Lambda Calculus 

•  α rule: choice of parameter names doesn’t 
matter, λx. M = λy. {y/x} M if y not free in 
M 
–  e.g., λx. (* 2 x) is same as λz. (* 2 z) 

•  β rule: function application is substitution of 
argument for free parameter 
–  e.g., (λx.(* 2 x)  4) is (* 2 4); more generally, 
((λx. M)   E) is {E/x} M 

•  η rule: these 2 functions always yield same 
results on equal arguments:  

•  ((λx. M) E) and E, if x is not free in E. 
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Evaluation Order 
•  More than one possible evaluation order 

–  e.g., ((λx. (* x  x))  (+ 2 3)) can be evaluated as 
((λx.(* x x)) 5) -->(* 5  5) --> 25 (by value) OR 
((λx.(* x  x) (+ 2 3)) --> (* (+ 2 3) (+ 2 3)) --> 
 (* 5 5)  --> 25 (by name) 

•  by name evaluation is lazy in that the argument 
is not evaluated unless it is used,  

•  e.g., (define (foo v w) (if (> v 0) (* v v) (* w v))) evaluates as 
(foo 3 (fact 500)) will not need to evaluate (fact 500), an 

expensive calculation, unless it is necessary because of the 
code of foo 

•  by value evaluation is eager 
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Normal Form 

•  Normal form implies there are no more 
function evaluations possible in the lambda 
term 

•  Church-Rosser theorem 
•  1936 Alonzo Church and J. Barkley Rosser – both mathematicians/

logicians 

–  Normal forms are unique 
–  If there is a normal form, (by name) substitution 

will find it 
•  Not every expression has a normal form 

–  e.g., if bar is (λx.(x  x)), evaluate (bar bar) 
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Lambda Calculus 

•  Universal theory of functions 
•   λ-calculus (Church, Rosser), recursive 

function theory (Kleene), Turing machines 
(Turing) all were formal systems to 
describe computation, developed at the 
same time in the 1930’s 
–  Shown formally equivalent to each other 
–  Results from one, apply to others 
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Lambda Calculus 

•  Conjecture: class of programs written in λ-
calculus  is equivalent to those which can be 
simulated on Turing machines. 

•  All partial recursive functions can be defined 
in λ-calculus. 

•  Pure λ-calculus involves functions with no 
side effects and no types.  
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Lambda Calculus Teminology 

•  Function: a map from a domain to a range 
•  Terms:  

–  variable (X)  
–  function abstraction or definition (λx.M) 
–  function application (M N) 
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Function Definition (Abstraction) 

•  F(y) = 2 + y  -- mathematics 
•  F ≡  λ y. 2+y -- λ calculus 

–  bound variable or argument 
–  function body 

•   λ x.x (identity function)  
•   λ y. 2 (constant function whose value is 2) 
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Function Application 

•  Process: take the argument and substitute 
it everywhere in the function body for the 
parameter 

(F   3) is 2 + 3 = 5; ((λ x.x)  λ y.2) is λ y.2; 
((λ z. z+5)   3) is  3+5 = 8 

•  Functions are first class citizens 
1.  Can be returned as a value 
2.  Can be passed as an argument 
3.  Can be put into a data structure as a value 
4.  Can be the value of an expression 
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Relation to C Function Pointers? 

•  Can simulate #1-4 with C function pointers, 
but this abstraction is closer to the machine 
than a function abstraction. 

•  Functions as values are defined more cleanly 
in Lisp and its descendants. 

•  No analogue in C for an unnamed function, 
(Lisp lambda expression) 
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Function Application 
•  Is a left associative operator 

(f g h) is ((f g) h) 
•   λ x.M x  is same as  λ x.(M x) 
•  Function application has highest precedence 
•  Currying (cf. Haskell Curry) 

Area of triangle is  λ b. λ h.(b*h)/2 
(Area  3)  is a function,  λ h.(3*h)/2, that 

describes the area of a family of triangles all 
with base 3 

((Area  3)  7) = 3 * 7 / 2 = 10.5 
Recall that in curried form, a function takes its 

arguments one-by-one 
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Type Signatures 

•  Can write function Area  (λ b. λ h.(b*h)/2) 
in two ways 

–  un-curried: α * β →  γ ,  given b,h as a pair of 
values, the function returns area 

–  curried: α → (β → γ) ,  given b, returns a function 
to calculate area when given h(height)  
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Free and Bound Variables 

•  Bound variable: x is bound when there is a 
corresponding λx in front of the λ expression: 

•  Free variable: x is not bound (analogous to a 
variable inherited from an encompassing 
imperative scope) 

(λ y. z)    (λ z. z) 

free occurrence of z

bound occurrence of zbinding occurrence of z

(( λ y. y)   y)   is  y 
Bound  free 
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Free and Bound Variables 

•  x is free in x, free(x) = x 
•  x is free (bound) in Y Z  if x is free (bound) 

in Y or in Z, free(Y Z)= free(Y) ∪ free(Z) 
•  x ∉ V, then x  free (bound) in λV.Y iff it 

occurs free (bound) in Y. All occurrences of 
elements of V are bound in λ V.Y, 

              free(λx.M) = free(M) - {x} 
•  x free (bound) in (Y), if x is free (bound) in Y 

Sethi, p550 
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Substitution 

•  Idea: function application is seen as a kind 
of substitution which simplifies a term 
–  ( (λx.M)  N)  as substituting N for x in M ;  

written as {N | x} M 
•  Rules - Sethi, p551 

1. If free variables of N have no bound 
occurrences in M, then {N | x} M is formed by 
replacing all free occurrences of x in M by N. 
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Substitution 

plus ≡ λa.λb. a+b 
then (plus 2) ≡ λb. 2+b but if we naively evaluate  
(plus b 3) we get into trouble! 

(plus b 3)  = (λa.λb. a+b  b  3) 
   = (λb. b+b  3) 
   = 3 + 3 = 6  

(plus b 3)  = (λa.λc. a+c  b  3) 
   = (λc. b+c  3) 
   = b + 3, what we expected! 

problem:  
b is a bound  
variable; need  
to rename before 
substitute. 
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Substitution 
2. If variable y free in N and bound in M, replace 

binding and bound occurrences of y by a new 
variable named z. Repeat until case 1. applies. 

•  Examples 
{u | x} x  = u  //u not bound in M=x   
{u | x} (x  u)  = (u  u) //u not bound in M=(x u) 
{λx.x | x} x = λx.x  //λx.x not bound in M=x 
{u | x} y  = y  //no free occurrences of x in M=y so no sub 
{u | x} λx.x  = λx.x //no free occurrences of x in M= λx.x 

so no sub 
{u | x} (λu.x)  = {u | x} (λz.x) = λz.u 
{u | x} (λu.u)  = {u | x} (λz.z) = λz.z 

Examples of need  
for change of  
variables. 
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Reductions 

•   β-reduction (λx.M) N = {N | x} M with above 
rules 

•   α-reduction (λx.M) = λz.{z | x} M, if z not 
free in M (allows change of bound variable 
names)  

•  η-reduction (λ x.(M  x)) = M, if x not free in 
M (allows stripping off of layers of indirection 
in function application) 

•  See Sethi, Figure 14.1, p 553 for rules about β-
equality of terms 
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Example 

(λxyz . (xz (yz))) (λx. x) (λy. y), 2 α-reds + fully 
parenthesize 

= [ { ( λabz .( a z (b z))) (λx .x)} (λy .y)] change vars 
= [ { ( λbz. ((λx.x) z (b z))) } (λy .y)],  {λx.x | a} 
= [ { λbz. (((λx.x) z) (b z))} (λy .y)], fully parenthesize  
= [ {λbz. (z (b z))} (λy .y)], {z | x} 
= [ { λz. (z ((λy .y) z))}], {λy.y | b}  
=   { (λz. z  z)},  {z | y} 
•  Note: we picked the order of β-reductions here 

 Evaluate (λxyz . xz (yz)) (λx. x) (λy. y) 
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Substitution Rules  Sethi p 555 

 M   {N | x} M  
 x   N    
 y   M    

if M a variable, then if M ≠ x get M, else get N 
(3.1 GHH) 
 PQ  {N | x} P {N | x} Q   

result of substitution applied to function 
application is to apply that substitution to the 
function and its argument and then perform 
the resulting application (3.2 GHH)   
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Substitution Rules  Sethi p 555 

     M   {N | x} M 
3.3a)  λx .P   λx .P   
never substitute for a bound variable within 

its scope 
3.3b)   λy .P   λy .P  
if there are no free occurrences of x in P 
3.3c)        λy .P   λy .{N | x} P 
when there are no free occurrences of y in N  
3.3d)  λy .P   λz .{N | x} { z | y} P 
when there is a free occurrence of y in N and 

z is not free in P or N, substitute z for y in 
P and continue. 
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Substitution Rules 

•  All these checks are aimed at ensuring 
that we don’t link variable occurrences 
that are independent! 

•  Our example ((λ a.λ b.a+b)  b), would use 
3.3d to change variables before doing 
the substitution  

•  Normal form of a term - a form which 
can allow no further β or η reductions 
–  No remaining ((λx.M) N),  called a redex or 

term which can be reduced 
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Example 

{y | x} λ y. x y //use 3.3d to change bound var 
λ z. {y | x} ({z | y} (x  y)) //apply 3.2 for fcn appln 
λ z. {y | x} ({z | y} (x)  {z | y} (y)) //apply 3.1 

twice 
λ z. {y | x} (x  z)  //apply 3.2 
λ z. ({y | x} (x) {y | x}  (z))  //apply 3.1 twice 
λ  z. y z  //final result;  
compare this to what we started with! 

EG from Principles of Functional Programming, 
H. Glaser, C. Hankin, D. Till, Prentice Hall, 1984 


