
1

Lambda Calculus
•  Formalism to describe semantics of

operations in functional PLs
–  Variables are free or bound

•  Function definition vs function abstraction
•  Substitution rules for evaluating functions
•  Normal form

–  Equivalent in descriptive power to Turing machines
•  Substitution rules

•  β reduction, α reduction, η-reduction

LambdaCalculus-1, CS5314 Sp2016 © BGRyder 1

LambdaCalculus-1, CS5314 Sp2016 © BGRyder 2

Lambda Calculus
•  A theory of functions

–  Equivalent in descriptive power to Turing machines
•  Syntax

Exp ::= Var | λ Var.Exp | (Exp1 Exp2)
λx.(x z) corresponds to (lambda (x) (x z)) in Scheme

•  How to express a function call?
–  Use notion of substitution
–  Substitute E for y in M, {E/y} M

 ((λx.λy.(+ x y)) 2 3)-->((λy.(+ 2 y)) 3)--> (+ 2 3)

2

LambdaCalculus-1, CS5314 Sp2016 © BGRyder 3

Evaluating Functions

•  Not so easy to do
–  if foo is (λx. λx.x) then (foo 2) is λx.x not 2

(x is a parameter of the function λx.x that is an
argument and unrelated to x.

–  if area is (λx.λy. (* x y)) then (area 3 y) should
be (* 3 y) not (* y y), but 2nd result happens by
blindly following simple substitution

–  free/bound variables distinguish these cases
λx.(x + y) y is free, x is bound

LambdaCalculus-1, CS5314 Sp2016 © BGRyder 4

Rules of Lambda Calculus

•  α rule: choice of parameter names doesn’t
matter, λx. M = λy. {y/x} M if y not free in
M
–  e.g., λx. (* 2 x) is same as λz. (* 2 z)

•  β rule: function application is substitution of
argument for free parameter
–  e.g., (λx.(* 2 x) 4) is (* 2 4); more generally,
((λx. M) E) is {E/x} M

•  η rule: these 2 functions always yield same
results on equal arguments:

•  ((λx. M) E) and E, if x is not free in E.

3

LambdaCalculus-1, CS5314 Sp2016 © BGRyder 5

Evaluation Order
•  More than one possible evaluation order

–  e.g., ((λx. (* x x)) (+ 2 3)) can be evaluated as
((λx.(* x x)) 5) -->(* 5 5) --> 25 (by value) OR
((λx.(* x x) (+ 2 3)) --> (* (+ 2 3) (+ 2 3)) -->
 (* 5 5) --> 25 (by name)

•  by name evaluation is lazy in that the argument
is not evaluated unless it is used,

•  e.g., (define (foo v w) (if (> v 0) (* v v) (* w v))) evaluates as
(foo 3 (fact 500)) will not need to evaluate (fact 500), an

expensive calculation, unless it is necessary because of the
code of foo

•  by value evaluation is eager

LambdaCalculus-1, CS5314 Sp2016 © BGRyder 6

Normal Form

•  Normal form implies there are no more
function evaluations possible in the lambda
term

•  Church-Rosser theorem
•  1936 Alonzo Church and J. Barkley Rosser – both mathematicians/

logicians

–  Normal forms are unique
–  If there is a normal form, (by name) substitution

will find it
•  Not every expression has a normal form

–  e.g., if bar is (λx.(x x)), evaluate (bar bar)

4

LambdaCalculus-1, CS5314 Sp2016 © BGRyder 7

Lambda Calculus

•  Universal theory of functions
•  λ-calculus (Church, Rosser), recursive

function theory (Kleene), Turing machines
(Turing) all were formal systems to
describe computation, developed at the
same time in the 1930’s
–  Shown formally equivalent to each other
–  Results from one, apply to others

LambdaCalculus-1, CS5314 Sp2016 © BGRyder 8

Lambda Calculus

•  Conjecture: class of programs written in λ-
calculus is equivalent to those which can be
simulated on Turing machines.

•  All partial recursive functions can be defined
in λ-calculus.

•  Pure λ-calculus involves functions with no
side effects and no types.

5

LambdaCalculus-1, CS5314 Sp2016 © BGRyder 9

Lambda Calculus Teminology

•  Function: a map from a domain to a range
•  Terms:

–  variable (X)
–  function abstraction or definition (λx.M)
–  function application (M N)

LambdaCalculus-1, CS5314 Sp2016 © BGRyder 10

Function Definition (Abstraction)

•  F(y) = 2 + y -- mathematics
•  F ≡ λ y. 2+y -- λ calculus

–  bound variable or argument
–  function body

•  λ x.x (identity function)
•  λ y. 2 (constant function whose value is 2)

6

LambdaCalculus-1, CS5314 Sp2016 © BGRyder 11

Function Application

•  Process: take the argument and substitute
it everywhere in the function body for the
parameter

(F 3) is 2 + 3 = 5; ((λ x.x) λ y.2) is λ y.2;
((λ z. z+5) 3) is 3+5 = 8

•  Functions are first class citizens
1.  Can be returned as a value
2.  Can be passed as an argument
3.  Can be put into a data structure as a value
4.  Can be the value of an expression

LambdaCalculus-1, CS5314 Sp2016 © BGRyder 12

Relation to C Function Pointers?

•  Can simulate #1-4 with C function pointers,
but this abstraction is closer to the machine
than a function abstraction.

•  Functions as values are defined more cleanly
in Lisp and its descendants.

•  No analogue in C for an unnamed function,
(Lisp lambda expression)

7

LambdaCalculus-1, CS5314 Sp2016 © BGRyder 13

Function Application
•  Is a left associative operator

(f g h) is ((f g) h)
•  λ x.M x is same as λ x.(M x)
•  Function application has highest precedence
•  Currying (cf. Haskell Curry)

Area of triangle is λ b. λ h.(b*h)/2
(Area 3) is a function, λ h.(3*h)/2, that

describes the area of a family of triangles all
with base 3

((Area 3) 7) = 3 * 7 / 2 = 10.5
Recall that in curried form, a function takes its

arguments one-by-one

LambdaCalculus-1, CS5314 Sp2016 © BGRyder 14

Type Signatures

•  Can write function Area (λ b. λ h.(b*h)/2)
in two ways

–  un-curried: α * β → γ , given b,h as a pair of
values, the function returns area

–  curried: α → (β → γ) , given b, returns a function
to calculate area when given h(height)

8

LambdaCalculus-1, CS5314 Sp2016 © BGRyder 15

Free and Bound Variables

•  Bound variable: x is bound when there is a
corresponding λx in front of the λ expression:

•  Free variable: x is not bound (analogous to a
variable inherited from an encompassing
imperative scope)

(λ y. z) (λ z. z)

free occurrence of z

bound occurrence of zbinding occurrence of z

((λ y. y) y) is y
Bound free

LambdaCalculus-1, CS5314 Sp2016 © BGRyder 16

Free and Bound Variables

•  x is free in x, free(x) = x
•  x is free (bound) in Y Z if x is free (bound)

in Y or in Z, free(Y Z)= free(Y) ∪ free(Z)
•  x ∉ V, then x free (bound) in λV.Y iff it

occurs free (bound) in Y. All occurrences of
elements of V are bound in λ V.Y,

 free(λx.M) = free(M) - {x}
•  x free (bound) in (Y), if x is free (bound) in Y

Sethi, p550

9

LambdaCalculus-1, CS5314 Sp2016 © BGRyder 17

Substitution

•  Idea: function application is seen as a kind
of substitution which simplifies a term
–  ((λx.M) N) as substituting N for x in M ;

written as {N | x} M
•  Rules - Sethi, p551

1. If free variables of N have no bound
occurrences in M, then {N | x} M is formed by
replacing all free occurrences of x in M by N.

LambdaCalculus-1, CS5314 Sp2016 © BGRyder 18

Substitution

plus ≡ λa.λb. a+b
then (plus 2) ≡ λb. 2+b but if we naively evaluate
(plus b 3) we get into trouble!

(plus b 3) = (λa.λb. a+b b 3)
 = (λb. b+b 3)
 = 3 + 3 = 6

(plus b 3) = (λa.λc. a+c b 3)
 = (λc. b+c 3)
 = b + 3, what we expected!

problem:
b is a bound
variable; need
to rename before
substitute.

10

LambdaCalculus-1, CS5314 Sp2016 © BGRyder 19

Substitution
2. If variable y free in N and bound in M, replace

binding and bound occurrences of y by a new
variable named z. Repeat until case 1. applies.

•  Examples
{u | x} x = u //u not bound in M=x
{u | x} (x u) = (u u) //u not bound in M=(x u)
{λx.x | x} x = λx.x //λx.x not bound in M=x
{u | x} y = y //no free occurrences of x in M=y so no sub
{u | x} λx.x = λx.x //no free occurrences of x in M= λx.x

so no sub
{u | x} (λu.x) = {u | x} (λz.x) = λz.u
{u | x} (λu.u) = {u | x} (λz.z) = λz.z

Examples of need
for change of
variables.

LambdaCalculus-1, CS5314 Sp2016 © BGRyder 20

Reductions

•  β-reduction (λx.M) N = {N | x} M with above
rules

•  α-reduction (λx.M) = λz.{z | x} M, if z not
free in M (allows change of bound variable
names)

•  η-reduction (λ x.(M x)) = M, if x not free in
M (allows stripping off of layers of indirection
in function application)

•  See Sethi, Figure 14.1, p 553 for rules about β-
equality of terms

11

LambdaCalculus-1, CS5314 Sp2016 © BGRyder 21

Example

(λxyz . (xz (yz))) (λx. x) (λy. y), 2 α-reds + fully
parenthesize

= [{ (λabz .(a z (b z))) (λx .x)} (λy .y)] change vars
= [{ (λbz. ((λx.x) z (b z))) } (λy .y)], {λx.x | a}
= [{ λbz. (((λx.x) z) (b z))} (λy .y)], fully parenthesize
= [{λbz. (z (b z))} (λy .y)], {z | x}
= [{ λz. (z ((λy .y) z))}], {λy.y | b}
= { (λz. z z)}, {z | y}
•  Note: we picked the order of β-reductions here

 Evaluate (λxyz . xz (yz)) (λx. x) (λy. y)

LambdaCalculus-1, CS5314 Sp2016 © BGRyder 22

Substitution Rules Sethi p 555

 M {N | x} M
 x N
 y M

if M a variable, then if M ≠ x get M, else get N
(3.1 GHH)
 PQ {N | x} P {N | x} Q

result of substitution applied to function
application is to apply that substitution to the
function and its argument and then perform
the resulting application (3.2 GHH)

12

LambdaCalculus-1, CS5314 Sp2016 © BGRyder 23

Substitution Rules Sethi p 555

 M {N | x} M
3.3a) λx .P λx .P
never substitute for a bound variable within

its scope
3.3b) λy .P λy .P
if there are no free occurrences of x in P
3.3c) λy .P λy .{N | x} P
when there are no free occurrences of y in N
3.3d) λy .P λz .{N | x} { z | y} P
when there is a free occurrence of y in N and

z is not free in P or N, substitute z for y in
P and continue.

LambdaCalculus-1, CS5314 Sp2016 © BGRyder 24

Substitution Rules

•  All these checks are aimed at ensuring
that we don’t link variable occurrences
that are independent!

•  Our example ((λ a.λ b.a+b) b), would use
3.3d to change variables before doing
the substitution

•  Normal form of a term - a form which
can allow no further β or η reductions
–  No remaining ((λx.M) N), called a redex or

term which can be reduced

13

LambdaCalculus-1, CS5314 Sp2016 © BGRyder 25

Example

{y | x} λ y. x y //use 3.3d to change bound var
λ z. {y | x} ({z | y} (x y)) //apply 3.2 for fcn appln
λ z. {y | x} ({z | y} (x) {z | y} (y)) //apply 3.1

twice
λ z. {y | x} (x z) //apply 3.2
λ z. ({y | x} (x) {y | x} (z)) //apply 3.1 twice
λ  z. y z //final result;
compare this to what we started with!

EG from Principles of Functional Programming,
H. Glaser, C. Hankin, D. Till, Prentice Hall, 1984

