
4/20/16	

1	

Lambda Calculus-2

•  Church-Rosser theorem
•  Supports referential transparency of function application
•  Says if it exists, normal form of a term is UNIQUE

LambdaCalculus-‐2,	 CS5314	 Sp2016	 ©	 	 BGRyder	 	 1	

LambdaCalculus-‐2,	 CS5314	 Sp2016	 ©	 	 BGRyder	 	

Church Rosser Property

•  Fundamental result of λ-calculus:
–  Result of a computation is independent of the

order in which β-reductions are applied
–  Leads to referential transparency in functional

PL’s
–  Another interpretation is that most terms in the
λ-calculus have a normal form, a form that cannot
be reduced any simpler; Church Rosser says if a
normal form exists, then all reduction sequences
lead to it

2	

4/20/16	

2	

LambdaCalculus-‐2,	 CS5314	 Sp2016	 ©	 	 BGRyder	 	

Normal Form

•  Does every λ-expression have a normal form?
NO, because there are terms which cannot be
simplified, yet they contain redices
–  (λx.x x) (λx.x x) = (λy. y y) (λx.x x) , α-reduction

 = (λx.x x) (λx.x x), β-reduction
this term has no normal form
–  (λx.x x x) (λx.x x x) = (λy. y y y) (λx.x x x) , α-red

 = (λx.x x x) (λx.x x x) (λx.x x x),β-red
this term grows as we apply β-reductions!

3	

LambdaCalculus-‐2,	 CS5314	 Sp2016	 ©	 	 BGRyder	 	

Normal Form

–  If add6 ≡ λx. x+6, twice ≡ λfλx. f (f x), what is
value of (twice add6)?

(twice add6) = (λf.λz.f (f z)) (λx.x+6)
 = λz. ((λx.x+6) ((λx.x+6) z))
 = λz. ((λx.x+6) (z+6))
 = λz. (z + 12), normal form
–  normal form of {λx. ((λz.z x) (λx.x))} y?
{λx. ((λz.z x) (λx.x))} y = {λx. ((λx.x) x)} y

 = {λx. x} y
 = y

free

bound

4	

4/20/16	

3	

LambdaCalculus-‐2,	 CS5314	 Sp2016	 ©	 	 BGRyder	 	

Equality of Terms

•  How check equality of 2 terms? Reduce each
term to its normal form and compare

•  But whether or not a term has a normal form
is undecidable (related to halting problem for
Turing machies)

•  Same term may have terminating and
nonterminating β-reduction sequences; if at
least one terminates, use its result as the
normal form for that term

5	

LambdaCalculus-‐2,	 CS5314	 Sp2016	 ©	 	 BGRyder	 	

Church Rosser Property

•  (GHT)Theorem 1: If a λ-expression reduces to
a normal form, it is unique

•  (GHT)Theorem 2: If we always reduce leftmost
redex first, the reduction sequence will
terminate in a normal form, if it exists.
–  ….A….B… both A and B are redices. if first λ in A is

to the left of first λ in B, then A is to the left of B
–  A redex to left of all other redices in a λ-expression

is leftmost

6	

Principles of Functional Programming,
H. Glaser, C. Hankin, D. Till, Prentice Hall, 1984

4/20/16	

4	

LambdaCalculus-‐2,	 CS5314	 Sp2016	 ©	 	 BGRyder	 	

Church Rosser Property
(Better Statement)

•  (Sethi) Theorem: For λ-expressions M,P,Q, let
⇒ stand for a sequence of α and β-reductions. if
M ⇒P and M ⇒Q then ∃ a term R such that P
⇒R and Q⇒R
–  Theorem says all reduction sequences progress

towards the same end result if they all terminate
M	

P	 Q	

R	

7	

LambdaCalculus-‐2,	 CS5314	 Sp2016	 ©	 	 BGRyder	 	

Demonstration of CR by Example

(λx.λy.x-y) ((λz.z) 2) ((λr.r+2) 3)

substituting for x first:
= (λy.((λz.z) 2) - y) ((λr.r+2) 3), simplify
= (λy.2-y) ((λr.r+2) 3), apply lambda-expr
= 2 - ((λr.r+2) 3), apply lambda-expr
= 2 - 5
= -3

first eval
second eval

~	 f	 	 g	 	 h	

8	

4/20/16	

5	

LambdaCalculus-‐2,	 CS5314	 Sp2016	 ©	 	 BGRyder	 	

Demonstration of CR by Example

(λx.λy.x-y) ((λz.z) 2) ((λr.r+2) 3)
substitute for y first:
= (λx.x- ((λr.r+2) 3)) ((λz.z) 2), simplify
= (λx.x - 5) ((λz.z) 2), apply lambda-expr
= (((λz.z) 2) – 5), apply lambda-expr
= (2 - 5)
= -3, the same result!

	 subs%tu%ng	 for	 x	 first:	
=	 (λy.((λz.z)	 2)	 -‐	 y)	 ((λr.r+2)	 	 3)	
=	 (λy.2-‐y)	 ((λr.r+2)	 	 3)	
=	 2	 -‐	 ((λr.r+2)	 	 3)	
=	 2	 -‐	 5	
=	 -‐3	
	 9	

LambdaCalculus-‐2,	 CS5314	 Sp2016	 ©	 	 BGRyder	 	

Call by Name

•  Can result in some parameter being evaluated
several times - inefficient

•  Evaluates arguments only when they are needed
(Algol60 thunks)

•  Abandoned in modern PLs because of
inefficiency

•  However, guaranteed to reach a normal form if
it exists

10	

4/20/16	

6	

LambdaCalculus-‐2,	 CS5314	 Sp2016	 ©	 	 BGRyder	 	

Call by Value

•  Efficient
•  Potentially does a calculation that may not be

used (if fcn is not strict in that parameter)
•  Can lead to non-terminating computation
–  Used in C, Pascal, C++, Scheme, functional

languages
•  Often obtains a normal form in real programs

11	

LambdaCalculus-‐2,	 CS5314	 Sp2016	 ©	 	 BGRyder	 	

Call by Need

•  Lazy evaluation - once we evaluate an
argument, then memoize its value to use again,
if needed

•  In between two other methods: value and
name

•  Accomplished by embedding a pointer to a
value instead of the argument itself in the
expression. Then, when value is first
calculated, it is saved so it will be available
for other uses

12	

4/20/16	

7	

LambdaCalculus-‐2,	 CS5314	 Sp2016	 ©	 	 BGRyder	 	

Call by Need

•  Allows use of unbounded streams of input as
well
–  What if we need a function to generate list(n), a

list of length n?
–  hd (tl (list(n))) needs only the first 2 elements to

be generated; system will only evaluate this many
elements which prefix the list.

13	

LambdaCalculus-‐2,	 CS5314	 Sp2016	 ©	 	 BGRyder	 	

Reduction Order

•  Distinguishing order of applying β-reductions
only matters when some reduction order leads
to a non-terminating computation

•  Sethi, p560:
–  Leftmost outermost redex first is call by name

(normal order)
–  Leftmost, innermost redex first is call by value
Where inner and outer refer to nesting of terms
(λ yz. (λx.x) z (y z)) (λ x.x)

14	

4/20/16	

8	

LambdaCalculus-‐2,	 CS5314	 Sp2016	 ©	 	 BGRyder	 	

Reduction Order

•  Start with fully parenthesized expression:
–  (λv. e) (i) - always reduce e first
–  (c b) (ii) - if c is not of form (i), then reduce c

until it is of that form. Then, we have a choice as
to how to proceed:
• call by name: reduce (c b) without

further reducing inside c or b.
• call by value: reduce any redices in c,

then those in b, and then reduce (c b).

15	

LambdaCalculus-‐2,	 CS5314	 Sp2016	 ©	 	 BGRyder	 	

Example 1

(Sethi, p560) {[λy.λz. ((λx.x) z) (y z))] (λx.x)} = (c b)
call by value: reduce c. [λy.λz.(z (y z))] (λx.x) = (c’ b) where b

already reduced. reduce (c’ b) yielding
 λz.(z ((λx.x) z)) = λz.(z (c” b”)). reduce (c” b”) which yields

 λz.(z z), the final term.
call by name: c is an abstraction (form i). so instantiate b directly

into c yielding λz.(((λx.x) z) ((λx.x) z)) = λ z. (c* b*)
 now reduce c* so we get an abstraction (form i.), yielding z.

then can perform final reduction of λz.(z ((λx.x) z)), yielding
 λz. z z, the final term, same as above.

16	

4/20/16	

9	

LambdaCalculus-‐2,	 CS5314	 Sp2016	 ©	 	 BGRyder	 	

Example 2

(((λx.λy.x) z) ((λr.r r) (λs. s s))) = (c b).
call by value: reduce c to yield ((λy.z) ((λr.r r) (λs. s s)))

which is ((λy.z) (c’ b’)). reduce (c’ b’) yielding
 ((λy.z) ((λs.s s) (λs. s s))). we end up with a similar

term b”. repeating this reduction will result in a non-
terminating computation

call by name: reduce c to yield ((λy.z) ((λr.r r) (λs. s s))).
now substitute b into the reduced c, yielding z, because
there is no bound y in λy.z. z is the normal form for the
above term, by definition.

17	

LambdaCalculus-‐2,	 CS5314	 Sp2016	 ©	 	 BGRyder	 	

Example 3

{(λz. (λx.x+6) ((λx.x+6) z)) 1} = { c b }
(c’ , b’)
call by value: reduce redices in c = (c’ b’) where b’ = (c” b”).
(c” b”) evaluates to b’ = z+6, yielding {(λz. (λx.x+6) (z+6)) 1}.

now evaluating (c’ b’) yields {(λz. (z+6)+6) 1} = {(λz. z+12) 1}
now evaluating {c b} yields 1 + 12 = 13.

call by name: c is of correct form, an abstraction (form i.). so
substitute b into c yielding ((λx.x+6) ((λx.x+6) 1)) = (c* b*).
substitute b* into c* yielding ((λx.x+6) 1) + 6 = (c^ b^) + 6.
substitute b^ into c^ yielding (1 + 6) + 6 = 7+6 = 13.

c”	 b”	

18	

