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Lambda Calculus-2 

•  Church-Rosser theorem 
•  Supports referential transparency of function application 
•  Says if it exists, normal form of a term is UNIQUE 
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Church Rosser Property 

•  Fundamental result of λ-calculus: 
–  Result of a computation is independent of the 

order in which β-reductions are applied 
–  Leads to referential transparency in functional 

PL’s 
–  Another interpretation is that most terms in the 
λ-calculus have a normal form, a form that cannot 
be reduced any simpler; Church Rosser says if a 
normal form exists, then all reduction sequences 
lead to it 
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Normal Form 

•  Does every λ-expression have a normal form?  
NO, because there are terms which cannot be 
simplified, yet they contain redices 
–  (λx.x x) (λx.x x)  = (λy. y y) (λx.x x) , α-reduction 

       = (λx.x x) (λx.x x), β-reduction 
this term has no normal form 
–  (λx.x x x) (λx.x x x) = (λy. y y y) (λx.x x x) , α-red 

   = (λx.x x x) (λx.x x x) (λx.x x x),β-red 
this term grows as we apply β-reductions! 
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Normal Form 

–  If add6 ≡ λx. x+6, twice ≡ λfλx. f (f x), what is 
value of (twice  add6)? 

(twice  add6)  = (λf.λz.f (f z)) (λx.x+6) 
    = λz. ((λx.x+6) ((λx.x+6) z)) 
    = λz. ((λx.x+6) (z+6)) 
    = λz. (z + 12), normal form 
–  normal form of {λx. ((λz.z x) (λx.x))} y? 
{λx. ((λz.z x) (λx.x))} y = {λx. ((λx.x) x)} y 

        =  {λx. x} y 
        = y 

 

free 

bound 
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Equality of Terms 

•  How check equality of 2 terms? Reduce each 
term to its normal form and compare 

•  But whether or not a term has a normal form 
is undecidable (related to halting problem for 
Turing machies) 

•  Same term may have terminating and 
nonterminating β-reduction sequences; if at 
least one terminates, use its result as the 
normal form for that term 
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Church Rosser Property 
 

•  (GHT)Theorem 1: If a λ-expression reduces to 
a  normal form, it is unique 

•  (GHT)Theorem 2: If we always reduce leftmost 
redex first, the reduction sequence will 
terminate in a normal form, if it exists. 
–  ….A….B… both A and B are redices. if first λ in A is 

to the left of first λ in B, then A is to the left of  B 
–  A redex to left of all other redices in a λ-expression 

is leftmost 
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Church Rosser Property 
(Better Statement) 

•  (Sethi) Theorem: For λ-expressions M,P,Q, let 
⇒ stand for a sequence of α and β-reductions. if 
M ⇒P and M ⇒Q then ∃ a term R such that P 
⇒R and Q⇒R 
–  Theorem says all reduction sequences progress 

towards the same end result if they all terminate  
M	  

P	   Q	  

R	  
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Demonstration of CR by Example 

(λx.λy.x-y) ((λz.z)  2) ((λr.r+2)  3) 
 
substituting for x first: 
= (λy.((λz.z) 2) - y) ((λr.r+2)  3), simplify 
= (λy.2-y) ((λr.r+2)  3), apply lambda-expr 
= 2 - ((λr.r+2)  3), apply lambda-expr 
= 2 - 5 
= -3 
  

first eval 
second eval 

~	  f	  	  g	  	  h	  
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Demonstration of CR by Example 

(λx.λy.x-y) ((λz.z)  2) ((λr.r+2) 3) 
substitute for y first: 
= (λx.x- ((λr.r+2)  3)) ((λz.z)  2), simplify 
= (λx.x - 5) ((λz.z)  2), apply lambda-expr 
= (((λz.z)  2) – 5), apply lambda-expr 
= ( 2 - 5) 
= -3, the same result! 
 

	  subs%tu%ng	  for	  x	  first:	  
=	  (λy.((λz.z)	  2)	  -‐	  y)	  ((λr.r+2)	  	  3)	  
=	  (λy.2-‐y)	  ((λr.r+2)	  	  3)	  
=	  2	  -‐	  ((λr.r+2)	  	  3)	  
=	  2	  -‐	  5	  
=	  -‐3	  
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Call by Name 

•  Can result in some parameter being evaluated 
several times - inefficient 

•  Evaluates arguments only when they are needed 
(Algol60 thunks) 

•  Abandoned in modern PLs because of 
inefficiency 

•  However, guaranteed to reach a normal form if 
it exists 
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Call by Value 

•  Efficient 
•  Potentially does a calculation that may not be 

used (if fcn is not strict in that parameter) 
•  Can lead to non-terminating computation 
–  Used in C, Pascal, C++, Scheme, functional 

languages 
•  Often obtains a normal form in real programs 
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Call by Need 

•  Lazy evaluation - once we evaluate an 
argument, then memoize its value to use again, 
if needed 

•  In between two other methods: value and 
name 

•  Accomplished by embedding a pointer to a 
value instead of the argument itself in the 
expression. Then, when value is first 
calculated, it is saved so  it will be available 
for other uses 
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Call by Need 

•  Allows use of unbounded streams of input as 
well 
–  What if we need a function to generate list(n), a 

list of length n? 
–  hd ( tl (list(n)) ) needs only the first 2 elements to 

be generated; system will only evaluate this many 
elements which prefix the list.  

13	  

LambdaCalculus-‐2,	  CS5314	  Sp2016	  ©	  	  BGRyder	  	  

Reduction Order 

•  Distinguishing order of applying β-reductions 
only matters when some reduction order leads 
to a non-terminating computation 

•  Sethi, p560: 
–  Leftmost outermost redex first is call by name 

(normal order)  
–  Leftmost, innermost redex first is call by value 
Where inner and outer refer to nesting of terms 
(λ yz. (λx.x) z (y z)) (λ x.x)
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Reduction Order 

•  Start with fully parenthesized expression:  
–  (λv. e) (i) - always reduce e first 
–  (c  b) (ii) - if c is not of form (i), then reduce c 

until it is of that form. Then, we have a choice as 
to how to proceed: 
• call by name: reduce (c b) without 

further reducing inside c or b. 
• call by value: reduce any redices in c, 

then those in b, and then reduce (c b). 
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Example 1 

(Sethi, p560) {[λy.λz. ((λx.x) z) (y z))] (λx.x)} = (c b) 
call by value: reduce c.  [λy.λz.(z  (y z))] (λx.x) = (c’ b) where b 

already reduced.  reduce (c’ b) yielding  
    λz.( z  ((λx.x) z) ) = λz.(z (c” b”)).  reduce (c” b”) which yields  

 λz.( z  z), the final term. 
call by name: c is an abstraction (form i). so instantiate b directly 

into c yielding λz.(((λx.x)  z) ((λx.x)  z)) = λ z. (c*  b*)   
    now reduce c* so we get an abstraction (form i.),  yielding  z.   

then can perform final reduction of λz.(z ((λx.x)  z)), yielding  
    λz. z z, the final term, same as above.  
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Example 2 

(((λx.λy.x) z) ((λr.r r) (λs. s s))) = (c  b).  
call by value: reduce c to yield ((λy.z)  ((λr.r r) (λs. s s))) 

which is  ((λy.z) (c’ b’)). reduce (c’  b’) yielding  
     ((λy.z)  ((λs.s s) (λs. s s))).  we end up with a similar 

term b”.  repeating this reduction will result in a non-
terminating computation 

call by name: reduce c to yield ((λy.z)  ((λr.r r) (λs. s s))). 
now substitute b into the reduced c, yielding z, because 
there is no bound y in λy.z.  z is the normal form for the 
above term, by definition. 
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Example 3 

{(λz. (λx.x+6) ((λx.x+6) z) )  1} = { c  b } 
(         c’          ,  b’               ) 
call by value:  reduce redices in c = (c’  b’) where b’ = (c” b”).  
(c” b”) evaluates to b’ = z+6, yielding {(λz. (λx.x+6) (z+6))  1}. 

now evaluating (c’ b’) yields {(λz. (z+6)+6)  1} = {(λz. z+12)  1} 
now evaluating {c b} yields 1 + 12 = 13.  

call by name: c is of correct form, an abstraction (form i.). so 
substitute b into c yielding ((λx.x+6) ((λx.x+6) 1)) = (c* b*). 
substitute b* into c* yielding ((λx.x+6) 1) + 6 = (c^ b^) + 6. 
substitute b^ into c^ yielding (1 + 6) + 6 = 7+6 = 13.  

c”	   b”	  
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