Lambda Calculus-2

* Church-Rosser theorem
« Supports referential transparency of function application
* Says if it exists, normal form of a term is UNIQUE

LambdaCalculus-2, CS5314 Sp2016 © BGRyder

Church Rosser Property

* Fundamental result of A-calculus:

— Result of a computation is independent of the
order in which $-reductions are applied

— Leads to referential fransparency in functional
PL's

— Another interpretation is that most terms in the
A-calculus have a normal form, a form that cannot
be reduced any simpler; Church Rosser says if a
normal form exists, then all reduction sequences
lead to it

LambdaCalculus-2, CS5314 Sp2016 © BGRyder

4/20/16

4/20/16

Normal Form

* Does every A-expression have a normal form?
NO, because there are terms which cannot be
simplified, yet they contain redices

— (Ax.x x) (Ax.x x) = (Ay.yy) (A\x.x X) , a-reduction
= (Ax.x x) (AXx.x x), B-reduction
this term has no normal form
— (Axx x x) (Axxxx)=(Ay.yYYY) (Ax.X X X) , a-red
= (Ax.x x x) (Ax.x x x) (Ax.X X X),p-red
this term grows as we apply -reductions!

ambdaCalculus-2, CS5314 Sp2016 © BGRyder

Normal Form

— If add6 = Ax. x+6, twice = AMfAx. f (f x), what is
value of (twice add6)?

(twice add6) = (Af.rzf (f z)) (Ax.x+6)
= Az, (Ax.x+6) ((Ax.x+6) z))
= Az, ((Ax.x+6) (z+6))
= \z. (z + 12), normal form free
— normal form of {Ax. (Az.z x) (Ax.x))})\/7/
{Ax. (hz.z x) (x.x)}y = {Ax. (Mx.x) XD}y bound
= {(Ax. x}y <2

Y

us-2, CS5314 Sp2016 © BGRyder

4/20/16

Equality of Terms

* How check equality of 2 terms? Reduce each
term to its normal form and compare

* But whether or not a term has a normal form
is undecidable (related to halting problem for
Turing machies)

« Same term may have terminating and
nonterminating p-reduction sequences; if at
least one terminates, use its result as the
normal form for that term

Calculus-2, CS5314 Sp2016 © BGRyder

Church Rosser Property

* (GHT)Theorem 1: If a h-expression reduces to
a normal form, it is unique

* (6HT)Theorem 2: If we always reduce leftmost
redex first, the reduction sequence will
terminate in a normal form, if it exists.

— ...A...B.. both A and B are redices. if first Ain A is
to the left of first A in B, then A is to the left of B

— A redex to left of all other redices in a A-expression
is leftmost

Principles of Functional Programming,
H. Glaser, C. Hankin, D. Till, Prentice Hall, 1984

nbdaCalculus-2, CS5314 Sp2016 © BGRyder

Church Rosser Property
(Better Statement)

* (Sethi) Theorem: For A-expressions M P,Q, let
= stand for a sequence of o and B-reductions. if
M =P and M =Q then 3 a term R such that P
=R and Q=R

— Theorem says all reduction sequences progress
towards the same end result if they all ferminate

s
..

Demonstration of CR by Example

(AxAy.x-y) ((Az.z) 2) ((Ar.r+2) 3) |~feh

first eval

substituting for x first:

= (Ay.(Az.2) 2) - y) ((Mr.r+2) 3), simplify
= (Ay.2-y) ((Ar.r+2) 3), apply lambda-expr
=2 - ((Mr.r+2) 3), apply lambda-expr
=2-5

=-3

second eval

4/20/16

Demonstration of CR by Example

(AxAy.x-y) ((Az.z) 2) ((Ar.r+2) 3)
substitute fory first:

= (Ax.x- ((\r.r+2) 3)) ((rz.z) 2), simplify
= (Ax.x - B) (hz.z) 2), apply lambda-expr
= (((Az.z) 2)-5), apply lambda-expr
=(2-9)

= -3, the same result!

Call by Name

* Can result in some parameter being evaluated

several times - inefficient

* Evaluates arguments only when they are needed

(Algol60 thunks)

» Abandoned in modern PLs because of
inefficiency

« However, guaranteed to reach a normal form if

it exists

4/20/16

Call by Value

Efficient
Potentially does a calculation that may not be
used (if fcn is not strict in that parameter)

Can lead to non-terminating computation
— Used in C, Pascal, C++, Scheme, functional
languages

Often obtains a normal form in real programs

Calculus-2, CS5314 Sp2016 © BGRyder

Call by Need

* Lazy evaluation - once we evaluate an
argument, then memoize its value to use again,
if needed

« In between two other methods: value and
name

* Accomplished by embedding a pointer to a
value instead of the argument itself in the
expression. Then, when value is first
calculated, it is saved so it will be available
for other uses

nbdaCalculus-2, CS5314 Sp2016 © BGRyder

4/20/16

Call by Need

* Allows use of unbounded streams of input as
well

— What if we need a function to generate list(n), a
list of length n?

— hd (tl (list(n))) needs only the first 2 elements to
be generated; system will only evaluate this many
elements which prefix the list.

LambdaCalculus-2, CS5314 Sp2016 © BGRyder

Reduction Order

« Distinguishing order of applying p-reductions
only matters when some reduction order leads
to a non-terminating computation

+ Sethi, p560:

— Leftmost outermost redex first is call by name
(normal order)

— Leftmost, innermost redex first is call by value

Where inner and outer refer to nesting of terms

(hyz. (Ax.x) z (y 2)) (A x.X)

LambdaCalculus-2, CS5314 Sp2016 © BGRyder

4/20/16

Reduction Order

 Start with fully parenthesized expression:
— (Av. e) (i) - always reduce e first

— (c b) (ii) - if cis not of form (i), then reduce ¢
until it is of that form. Then, we have a choice as
to how to proceed:

« call by name: reduce (c b) without
further reducing inside c or b.

« call by value: reduce any redices in c,
then those in b, and then reduce (c b).

LambdaCalculus-2, CS5314 Sp2016 © BGRyder

Example 1

(Sethi, p560) {[Ay.Az. (Ax.x) Z) (y 2))] (Ax.x)} = (c b)

call by value: reduce c. [Ay.Az.(z (y 2))] (Ax.x) = (¢’ b) where b
already reduced. reduce (¢’ b) yielding

Az.(z ((Ax.x)z))=2rz(z (c” b")). reduce (c” b”) which yields
Az.(z z), the final term.

call by name: c is an abstraction (form i). so instantiate b directly
into c yielding Az.((Ax.x) z) ((Ax.x) z))= A z. (c* b*)
now reduce c* so we get an abstraction (formi.), yielding z.
then can perform final reduction of Az.(z ((Ax.x) Zz)), yielding
A\z. z z, the final term, same as above.

LambdaCalculus-2, CS5314 Sp2016 © BGRyder

4/20/16

Example 2

(((Ax.ry.x) z) ((Ar.rr) (As. s s))) = (¢ b).

call by value: reduce c to yield ((Ay.z) ((Ar.rr) (is.s s)))
which is ((hy.z) (¢’ b")). reduce (¢’ b’)yielding
((hy.z) ((rs.ss) (hs.s s))). we end up with a similar

term b”. repeating this reduction will result in a non-
terminating computation

call by name: reduce c to yield ((Ay.z) ((Ar.rr) (rs. s s))).
now substitute b into the reduced c, yielding z, because

there is no bound y in Ay.z. zis the normal form for the
above term, by definition.

LambdaCalculus-2, CS5314 Sp2016 © BGRyder

Example 3
c E"
{(Az. x.x+6) (Ax.x+6)z)) 1} ={c b}
(c . b’)

call by value: reduce redicesinc=(c’ b’)whereb’” = (c" b").

(¢” b”) evaluates to b’ = z+6, yielding {(Az. (Ax.x+6) (z+6)) 1}.
now evaluating (¢’ b") yields {(Az. (z+6)+6) 1} = {(Az. z+12) 1}
now evaluating {c b} yields 1 + 12 = 13.

call by name: c is of correct form, an abstraction (form i.). so
substitute b into c yielding (Ax.x+6) ((Ax.x+6) 1)) = (c* b*).
substitute b* into c* yielding ((Ax.x+6) 1) + 6 = (¢” b") + 6.
substitute b” into c” yielding (1+ 6) + 6 = 7+6 = 13.

LambdaCalculus-2, CS5314 Sp2016 © BGRyder

4/20/16

