OOPLs - call graph construction

+ Compile-time analysis of reference variables
and fields

- Problem: how to resolve virtual function calls?

* Need to determine to which objects (or types of
objects) a reference variable may refer during execution

- Type hierarchy-based methods
+ Class hierarchy analysis (CHA)
* Rapid type analysis (RTA)

- Flow-based methods

- Field-sensitive, flow-insensitive, context-insensitive
reference (i.e., points-to) analysis

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder 1

Example - executed calls
cf Frank Tip, OOPSLA’ 00

static void main(){ class A {
B bl = new B(); foo(){..}
A al = new A(); }

f(bl); class B extends A{ A
} g(bl); foo() {..}
static void f(A a2){ }
a2.f00(); class C extends B{ B
foo() {..} //
C

}

static void g(B b2){ }
B b3 = b2; class D extends B{
b3 = new C(); foo(){..}
b3.foo(); }

}

D

OOPLs-CallGrphConstruct, CS5314 Sp2016 N
BGRyder

Reference Analysis

* OOPLs need type information about objects
to which reference variables can point to
resolve dynamic dispatch

+ Often data accesses are indirect to object
fields through a reference, so that the set of
objects that might be accessed depends on
execution-time values of reference variables

* Need to pose this as a compile-time program
analysis with representations for reference
variables/fields, objects and classes.

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder 3

Reference Analysis

- Different algorithms and program representation
choices affect precision and cost

- Class analyses use an abstract object (with or without
fields) to represent all objects of a class

- Points-to analyses use object instantiations, grouped
by some mechanism (e.g., creation sites)

* The analysis can incorporate information about
flow of control in the program or ignore it
- Flow sensitivity (accounts for statement order)
- Context sensitivity (separates calling contexts)

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

Reference Analysis

* Program representation used for analysis can
incorporate reachability of methods as part
of the analysis or can assume all methods are
reachable

» Techniques can be differentiated by their
solution formulation (that is, kinds of
relations:

- e.g., for reference assignments
p =q, inferpreted as
Pts-to(q) C Pts-to(p) vs. P¥s-to(q) = Pts-to(p)

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

Class Hierarchy Analysis

+ Earliest method for reference analysis was
CHA by Craig Chamber’ s group (UWashington)
- Idea: look at class hierarchy to determine what
classes of object can be pointed to by a reference
declared to be of class A,

+ in Java this is the subtree in inheritance hierarchy rooted
at A, cone (A)

Makes assumption that whole program is available
and that all methods are reachable

Ignores flow of control
Uses 1 abstract object per class
Cheap, very approximate. safe

J. Dean, D. Grove, C. Chambers, Optimization of OO Programs Using Static
Class Hierarchy, ECOOP’ 95

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

CHA Example

cf Frank Tip, OOPSLA’ 00

static void main(){ class A {
B bl = new B(); s~ "~<, foo(){..}
A al = new A(); I }
£(bl); : class B extends A{ A
g(bl); [£00() {.} ‘
S T |
static void £(A a2){ /" class C extends B{ B
a2.foo(); - // £00() 1)
} N g //\\
N -

static void g(B b2 J{~ 5y class D extends B{ 'C D
B b3 = b2; / foo(){..}
b3 = new C();

b3.foo(); ~

—_————

~

Cone(Declared_type(receiver)) |

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

CHA Example

class A {

foo(){..}

static void main(){
B bl = new B();

A al = new A(); } .

main

f(bl); class B extends A{
g(bl); foo() {..}
} }
static void f(A a2){ 1,55 C extends B{ / \
a2.foo(); foo() {.}
f(A) 9(B)

.
s
7

}
static void g (B b2){ }
class D extends B{

B b3 = b2;
b3 = new C(); foo () {--}

b3.foo();
}

Afoo() Bfoo() Cfoo) D.foo)
Call Graph

1
1
1
1
|
1
v

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

More on CHA

- Type of receiver needn’t be uniquely resolvable
to de-virtualize a call

- Need applies-to set for each method (the set of
classes for which this method is the target when
the run-time type of the receiver is one of those
classes)

* At a call site, take set of possible classes for receiver and
intersect that with each possible method’ s applies-to set.

* If only one method’s set has a non-empty intersection,
then invoke that method directly

* Otherwise, need to use dynamic dispatch at runtime
- Also can use run-time checks of actual receiver type
(through reflection) to cascade through a small
number of choices for direct calls, given predictions
due to static or dynamic analysis

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

Rapid Type Analysis

* Improves CHA

« Constructs call graph on-the-fly, interleaved
with the analysis

- Key idea: only expands calls if has seen an
instantiated object of appropriate type

- Ignores classes which have not been instantiated
as possible receiver types

* Makes assumption that whole program is
available and that all methods are reachable

* Uses 1 abstract object per class

D.Bacon and P. Sweeney, “Fast Static Analysis of C++
Virtual Function Calls”, OOPSLA’ 96

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

RTA Example

cf Frank Tip, OOPSLA’ 00

static void main(){ class A {
B bl = new B(); == foo(){..}
A al = new A(); " }
f(bl); | class B extends A{ A
g(bl); | £00() {.}
} 1 }
i id £(a a2){ ' — 7~
statzlcf vor (/ class C extends B{ B
a2.foo();
05 £00() {.} /
} NT~ PR
~ -z
/
static void g(B b2){ /, class D extends B{ C D
foo(){..}

B b3 = b2;
b3 = new C();
b3.foo(); ~_

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

RTA Example

static void main(){ <class A {
B bl = new B(); foo(){..}
A al = new A(); }
f(bl); class B extends A{
g(bl); foo() {..}
}
static void f(A a2){ class C extends B{
. a2.foo(); £00() {.} Q(B)
static void g (B b2){ } ;
B b3 = b2; class D extends B{ H
b3 = new C(); foo(){..} ;
b3.foo(); ;
}
A.foo() B.foo() C.foo() D.foo()

Call Graph

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

Comparisons
Bacon-Sweeney, OOPSLA’ 96

class A {
public :
virtual int foo(){ return 1; };
}i
class B: public A {
public :
virtual int foo(){ return 2; };
virtual int foo(int i) { return i+l; };
}i

void main() {

B* p = new B; -
int resultl = p->foo(l); |CHA resolves result2 call uniquely
int result2 = p->foo() ; |10 B.foo() because B has no

’

A* q = p; subclasses, however it cannot do the
int result3 = g->foo(); |Same for the result3 call.
} RTA resolves the result3 call uniquely

because only B has been instantiated.

13
OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

Type Safety Limitations
Bacon-Sweeney, OOPSLA’ 96
+ CHA and RTA both assume type safety of the
code they examine

//#1 A foo()
void* x = (void*) new B

B* g = (B*) x;//a safe downcast

int casel = g->foo()

//#2

void* x = (voic;l;) new A B fOO()
B* g = (B*) x;//an unsafe downcast .
int case2 = g->foo()//probably no error foo(int)
//#3

void* x = (void*) new A

B* g = (B*) x;//an unsafe downcast

int case3 = g->foo(666)//runtime error

These analyses can’ t distinguish these 3 cases!

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

Experimental Comparison

Bacon and Sweeney, OOPSLA’ 96

[Benchmark | Lines | Description 1
sched 5,712 | RS5/6000 Instruction Timing Simulator
ixx 11,157 | TDL specification to C++ stub-code translator
lcom 17,278 | Compiler for the “L” hardware description language
hotwire 5,335 | Scriptable graphical presentation builder
simulate 6,672 | Simula-like simulation class library and example
idl 30,288 | SunSoft IDL compiler with demo back end
taldict 11,854 | Taligent dictionary benchmark
deltablue 1,250 | Incremental dataflow constraint solver
richards 606 | Simple operating system simulator

Table 1: Benchmark Programs. Size is given in non-blank lines of code

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

Data Characteristics

* Frequency of execution matters
- Direct calls were 51% of static call sites but only
39% of dynamic calls
- Virtual calls were 21% of static call sites but were
36% of dynamic calls

* Results they saw differed from previous
studies of C++ virtuals
- Importance of benchmarks

- Paper was at a time when C++ programs were
usually transformed C codes (didn't use virtual
methods as much as modern codes)

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

Findings

* RTA was better than CHA on virtual function
resolution, but not on reducing code size
- Inference is that call graphs constructed have

same node set but not same edge set!

* Claim both algorithms cost about the same
because the dominant cost is traversing the
cfg’s of methods and identifying call sites,
can pick up object creations during traversal

* Claim that RTA is good enough for call graph
construction so that more precise analyses
are not necessary for this task

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

Dimensions of Analysis

+ How to achieve more precision in analysis for
increased cost?
- Incorporate flow in and out of methods

- Refine abstract object representing a class to
include its fields

- Incorporate locality of reference usage in
program into analysis rather than 1 ‘references’
solution over the entire program

- Always use reachability criteria in constructing
call graph

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

Points-to Analysis for Java

* Points-to analysis traces flow of values
through pointers (or reference variables and
fields) in order to resolve virtual calls and
trace side effects through indirect writes

* Historical roots in points-to analysis for C
- Steensgaard’s algorithm
- Andersen’s algorithm
- Flow- and context sensitivity

* Field-sensitive analysis for Java

- Based on Andersen for C augmented with handling
for fields and dynamic dispatch

20
OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

10

Flow & Context Sensitivity

in Program Analysis
* Flow sensitivity
- Analysis calculates a different solution at each
program point
- Analysis captures the sequential order of
executions of statements
- Expensive and highly accurate

+ Context sensitivity

- Analyze a method separately for different calling
contexts (e.g., call sites)

- Required often for accuracy for security and side
effects clients

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

21

Points-to Analyses for C

* Popular flow- and context-insensitive

formulations of points-to analysis
- Scalable to large codes (MLOC)
- Good enough for ensuring safety of some optimizations
- Good for program understanding applications

- Not great for applications needing precise def-use information
(e.g., program slicing, testing)

- Solution procedure utilizes unification or

inclusion constraints
- P =Qeither implies PtsTo(P) = PtsTo(Q) or PtsTo(Q) C PtsTo(P)

- Extended to points-to analyses for OOPL
reference variables/fields

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

22

11

Points-to Analyses for C

» Bjarne Steensgaard's algorithm (POPL’ 96)

- Uses unification constraints so that for pointer
assignments, p = q, algorithm makes P¥sTo(p)=PtsTo(q)
+ This union operation is done recursively for multiple-level pointers
- Reduces the size of the points-to graph (in terms of
both nodes and edges)

* Almost linear solution time in terms of program size, O(n) using fast
union-find algorithm

* Imprecision stems from merging points-to sets
- One points-to set per pointer variable over entire
program

23
OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

cf M Shapiro and S. Horwitz, “Fast and Accurate
Flow-insensitive Points-to Analysis” POPL’ 97

Steensgaard - Example

1 2 alp 1% ¢

— b —
a ¢ > N

4 d
d e 3
l1. a = &b
2. b = &c a+p e
3. d = &e 4| a e |4
4., a = &d

Points-to sets found: PtsTo(a)={b,d}
Pt+sTo(b,d)={c,e}

24
OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

12

Steensgaard Solution Procedure -
At a glance

* Find all pointer assignments in program (after
conversion to single dereference form)

* Form set of points-to graph nodes from
Eoin‘rer' variables/fields and variables (in the
eap or whose address has been taken)
- Examine each statement, in arbitrary order, and
construct points-to edges

* Merge nodes (and edges) where indicated by unification
constraints (only 1 out edge labelled * per pointer
variable)

+ After (almost) linear pass over these
assignments, points-to graph is complete

25
OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

Points-to Analysis for C

* Andersen’ s analysis (Ph.D.Thesis 1994)

- Uses inclusion constraints so that for pointer
assignments, p = q, algorithm makes

Pts-to(q) C Pts-to(p)

- Points-to graph is larger (i.e., has more nodes) than
Steensgaard’ s and more precise

- Cubic worst case complexity in program size, O(n3)

- One points-to set per pointer variable over entire
program

26
OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

13

Andersen - Example

int **a;

int *b,*d, *g;

int c,e,f;

l.a = &b

2.b = &c

3.d = &e

4.a = &d 6

5.d = &f

6.g = d Steensgaard a{pt>
7.9 = *a solution . d e |4

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

27

Andersen’ s Solution Procedure -
At a glance

* Find all pointer assignments in program

+ Form set of points-to graph nodes from pointer
variables/fields and variables on the heap or whose
address is taken

- Examine each statement, in arbitrary order, and construct
points-to edges
* Need to create more edges when see p = q type
assignments so that all outgoing points-to nges from q
are copied to be outgoing from p (i.e. processing inclusion
constraints)
* If new outgoing edges are added subsequently to q
during the algorithm, they must be also copied to p
+ Work results in O(n3) worst case cost

- Treat parameter - argument associations like assignment
statements

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

28

14

Example of Points-to Analysis

class A { void m(X p) {..} }

a
class B extends A {
Xf;

void m(X q) { this.f=q; } b

b
B b = new B(); P

X x = new X();

Aa=b;
a.m(x); X

Note: A.m() not analyzed q /

because it’s unreachable.

29
OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

Constraints Generated

* B b =new B(); {og} € PtsTo(b)
« X x = new X(); {oyx} € PtsTo(x)
- Aa=b;PtsTo(b) C PtsTo(a)
« a.m(x);
- Arg-param relations cause: this,, = a; q = x; which

generates: PtsTo(a) C PtsTo(this,,), PtsTo(x) C
P+sTo(q)

* Then we process the code within m()
- this,, f=gq

- A satisfying assignment for these constraints is a
points-to solution for this code.

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

30

15

FieldSens Points-to Analysis for Java

+ Based on Andersen’ s points-to analysis but also add
object reference fields to points-to graph as
suffices for reference variables

- e.g., class A has fields f, g then p=new A(), means p.f and p.g
are in the points-to graph

+ Define and solve a system of annotated set-inclusion
constraints

- Handles virtual calls by simulation of run-time method lookup
- Models the fields of objects

- Extended BANE (UC Berkeley) constraint solver

* Analyzes only possibly executed code
- Ignores unreachable code from libraries

Rountev, A. Milnova, B. Ryder, “Points-to
Analysis for Java Using Annotated Constraints”

’ 31
OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder OOPSLA 01

FieldSens Example

static void main(){

B bl = new B(); al — .o,
A al = new A();
fgi;; b1 og
g 7
static void f£(A a2){
a2.foo();
} b2 b3
static void g(B b2){
B b3 = b2; Points-to Gr‘aph \
b3 = new C(); summarizes
b3.foo(); reference/object
} relationships ¢

32
OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

16

FieldSens Example

cf Frank Tip, OOPSLA’ 00
class A {

foo(){..}

static void main(){
B bl = new B();
A al = new A();
f(bl); }
g(bl);\\\\az 0, Class B extends A{

} =% £00() {...}
4
static void f(a a2){ /! }
a2.foo(); ; class C extends B{

}) foo() {...}

static void g(B b2){/ }
B b3 = b2; ! class D extends B{
b3 = new C(); _.~ foo(){...}
b3.foo(); =~ }
}
b3—— o
\ 33
OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder OB

FieldSens Characteristics

* Only analyzes methods reachable from main()

* Keeps track of individual reference variables
and fields

* Groups instances of objects by their creation
site

* Incorporates reference value flow in
assignments and method calls

34
OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

17

FieldSens Findings

* Empirical testing found
- Significant precision gains over RTA at call sites
found to be polymorphic by CHA
- Generated useful points-to info for client analysis
+ Object read-write information

* Synchronization removal (thread-local)
+ Stack allocation (method-local)

35
OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

Imprecision of Context Insensitivity

class Y extends X { ... }

class A { f
X f;

" 4
_ 4

; thisA.m q

Aa=newA(; f
a.m(new X()) ;

‘Aaa=newA();

aa.m(new Y()) ; aa >| 03

|- ——>]

36
OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

18

Object-sensitive Analysis

- A kind of functional context sensitivity for flow-
insensitive analysis of OO languages

* Formulate an object-sensitive Andersen’s
(points-to) analysis
- Analysis of instance methods and constructors
distinguished for different contexts
- Receiver objects used to distinguish calling contexts
- Empirical evaluation vs. context-insensitive FieldSens
analysis

« this, formals and return variables (effectively) replicated

37
OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

Example: Object-sensitive Analysis

class A { f

X f: a 0, Oy
thisy2.f=q"3; » |thisyp, q

¥ 5

- 03 03

a.m(new X()) ;
A aa =newA();
aa.m(new Y()) ; aar— o0, f |0y

38
OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

19

ObjSens Findings

* Precision gains for problems such as def-uses
for object fields and side effect analysis (per
statement) for practically no additional cost

+ Clients
- Program test coverage metrics
- Program slicing
- Program understanding tools

A. Milanova, A. Rountev, and B. Ryder. Parameterized object-sensitivity for
points-to and side-effect analyses for Java. In International Symposium on

Software Testing and Analysis, pages 1-11, 2002.Followup TOSEM paper 2005.

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder

39

20

