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OOPLs - call graph construction 

•  Compile-time analysis of reference variables 
and fields 
–  Problem: how to resolve virtual function calls? 

•  Need to determine to which objects (or types of 
objects) a reference variable may refer during execution 

–  Type hierarchy-based methods 
•  Class hierarchy analysis (CHA) 
•  Rapid type analysis (RTA) 

–  Flow-based methods 
•  Field-sensitive, flow-insensitive, context-insensitive 

reference (i.e., points-to) analysis 
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Example – executed calls 
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}
static void g(B b2){

B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

cf Frank Tip, OOPSLA’00 
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C    D
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Reference Analysis 

•  OOPLs need type information about objects 
to which reference variables can point to 
resolve dynamic dispatch 

•  Often data accesses are indirect to object 
fields through a reference, so that the set of 
objects that might be accessed depends on 
execution-time values of reference variables 

•  Need to pose this as a compile-time program 
analysis with representations for reference 
variables/fields, objects and classes. 
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Reference Analysis 
•  Different algorithms and program representation 

choices affect precision and cost  
–  Class analyses use an abstract object (with or without 

fields) to represent all objects of a class  
–  Points-to analyses use object instantiations, grouped 

by some mechanism (e.g., creation sites)  
•  The analysis can incorporate information about 

flow of control in the program or ignore it 
–  Flow sensitivity (accounts for statement order) 
–  Context sensitivity (separates calling contexts) 



3

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
5

Reference Analysis 

•  Program representation used for analysis can 
incorporate reachability of methods as part 
of the analysis or can assume all methods are 
reachable 

•  Techniques can be differentiated by their 
solution formulation (that is, kinds of 
relations: 
–  e.g., for reference assignments   

 p  = q, interpreted as 
 Pts-to(q) ⊆ Pts-to(p) vs. Pts-to(q) = Pts-to(p) 
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Class Hierarchy Analysis 
•  Earliest  method for reference analysis was 

CHA by Craig Chamber’s group (UWashington) 
–  Idea: look at class hierarchy to determine what 

classes of object can be pointed to by a reference 
declared to be of class A,   

•  in Java this is the subtree in inheritance hierarchy rooted 
at A,  cone (A) 

–  Makes assumption that whole program is available 
and that all methods are reachable 

–  Ignores flow of control  
–  Uses 1 abstract object per class 
–  Cheap, very approximate. safe 

J. Dean, D. Grove, C. Chambers, Optimization of OO Programs Using Static
Class Hierarchy, ECOOP’95
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CHA Example 
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}

static void g(B b2){
B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

cf Frank Tip, OOPSLA’00
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Cone(Declared_type(receiver)) 
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CHA Example 
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}
static void g(B b2){

B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

main 

A.foo()   B.foo()   C.foo()   D.foo() 

f(A)              g(B) 

Call Graph 
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More on CHA 
•  Type of receiver needn’t be uniquely resolvable 

to de-virtualize a call 
–  Need applies-to set for each method (the set of 

classes for which this method is the target when 
the run-time type of the receiver is one of those 
classes) 

•  At a call site, take set of possible classes for receiver and 
intersect that with each possible method’s applies-to set.  

•  If only one method’s set has a non-empty intersection, 
then invoke that method directly 

•  Otherwise, need to use dynamic dispatch at runtime 
–  Also can use run-time checks of actual receiver type 

(through reflection) to cascade through a small 
number of choices for direct calls, given predictions 
due to static or dynamic analysis 
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Rapid Type Analysis 

•  Improves CHA 
•  Constructs call graph on-the-fly, interleaved 

with the analysis 
•  Key idea: only expands calls if has seen an 

instantiated object of appropriate type 
–  Ignores classes which have not been instantiated 

as possible receiver types 
•  Makes assumption that whole program is 

available and that all methods are reachable 
•  Uses 1 abstract object per class 

D. Bacon and P. Sweeney,  “Fast Static Analysis of C++
Virtual Function Calls”, OOPSLA’96
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RTA Example 
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}

static void g(B b2){
B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

cf Frank Tip, OOPSLA’00 
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RTA Example 
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}
static void g(B b2){

B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

main 

A.foo()   B.foo()   C.foo()   D.foo() 

f(A)              g(B) 

Call Graph 



7

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
13

Comparisons 
class A {
public : 
  virtual int foo(){ return 1; };
};
class B: public A {
public :
  virtual int foo(){ return 2; };
  virtual int foo(int i) { return i+1; };
};
void main() {
   B* p = new B;
   int result1 = p->foo(1);
   int result2 = p->foo( ) ;
   A* q = p;
   int result3 = q->foo( );
}

CHA resolves result2 call uniquely 
to B.foo() because B has no  
subclasses, however it cannot do the 
same for the result3 call. 
RTA resolves the result3 call uniquely 
because only B has been instantiated. 

Bacon-Sweeney, OOPSLA’96 
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Type Safety Limitations 

•  CHA and RTA both assume type safety of the 
code they examine 
//#1
void* x = (void*) new B
B* q = (B*) x;//a safe downcast
int case1 = q->foo()
//#2
void* x = (void*) new A
B* q = (B*) x;//an unsafe downcast
int case2 = q->foo()//probably no error
//#3
void* x = (void*) new A
B* q = (B*) x;//an unsafe downcast
int case3 = q->foo(666)//runtime error
 

A

B

foo()

foo()
foo(int)

These analyses can’t distinguish these 3 cases! 

Bacon-Sweeney, OOPSLA’96 
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Experimental Comparison 
Bacon and Sweeney, OOPSLA’96 
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Data Characteristics 

•  Frequency of execution matters   
–  Direct calls were 51% of static call sites but only 

39% of dynamic calls 
–  Virtual calls were 21% of static call sites but were 

36% of dynamic calls 
•  Results they saw differed from previous 

studies of C++ virtuals  
–  Importance of benchmarks 
–  Paper was at a time when C++ programs were 

usually transformed C codes (didn’t use virtual 
methods as much as modern codes) 
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Findings 

•  RTA was better than CHA on virtual function 
resolution, but not on reducing code size 
–  Inference is that call graphs constructed have 

same node set but not same edge set! 
•  Claim both algorithms cost about the same 

because the dominant cost is traversing the 
cfg’s of methods and identifying call sites, 
can pick up object creations during traversal 

•  Claim that RTA is good enough for call graph 
construction so that more precise analyses 
are not necessary for this task 
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Dimensions of Analysis 

•  How to achieve more precision in analysis for 
increased cost? 
–  Incorporate flow in and out of methods  
–  Refine abstract object representing a class to 

include its fields 
–  Incorporate locality of reference usage in 

program into analysis rather than 1 ‘references’ 
solution over the entire program 

–  Always use reachability criteria in constructing 
call graph 
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Points-to Analysis for Java 

•  Points-to analysis traces flow of values 
through pointers (or reference variables and 
fields) in order to resolve virtual calls and 
trace side effects through indirect writes 

•  Historical roots in points-to analysis for C 
–  Steensgaard’s algorithm 
–  Andersen’s algorithm 
–  Flow- and context sensitivity 

•  Field-sensitive analysis for Java  
–  Based on Andersen for C augmented with handling 

for fields and dynamic dispatch 
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Flow & Context Sensitivity 
in Program Analysis 

•  Flow sensitivity 
–  Analysis calculates a different solution at each 

program point 
–  Analysis captures the sequential order of 

executions of statements 
–  Expensive and highly accurate 

•  Context sensitivity 
–  Analyze a method separately for different calling 

contexts (e.g., call sites) 
–  Required often for accuracy for security and side 

effects clients 
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Points-to Analyses for C 

•  Popular flow- and context-insensitive 
formulations of points-to analysis 
–  Scalable to large codes (MLOC) 
–  Good enough for ensuring safety of some optimizations 
–  Good for program understanding applications 
–  Not great for applications needing precise def-use information 

(e.g., program slicing, testing) 

•  Solution procedure utilizes unification or 
inclusion constraints 
–  P = Q either implies PtsTo(P) = PtsTo(Q) or PtsTo(Q) ⊆ PtsTo(P) 

•  Extended to points-to analyses for OOPL 
reference variables/fields 
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Points-to Analyses for C 

•  Bjarne Steensgaard’s algorithm (POPL’96) 
–  Uses unification constraints so that for pointer 

assignments, p = q, algorithm makes PtsTo(p)=PtsTo(q)  
•  This union operation is done recursively for multiple-level pointers 

–  Reduces the size of the points-to graph (in terms of 
both nodes and edges) 

•  Almost linear solution time in terms of program size, O(n) using fast 
union-find algorithm 

•  Imprecision stems from merging points-to sets 

–  One points-to set per pointer variable over entire 
program 
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24

Steensgaard - Example 
a b c

d e

1 2 a b c

d e

1 2

1. a = &b
2. b = &c
3. d = &e
4. a = &d

cf M Shapiro and S. Horwitz, “Fast and Accurate 
Flow-insensitive Points-to Analysis” POPL’97 

PtsTo(a)={b,d} 
PtsTo(b,d)={c,e} 

Points-to sets found: 

3
4

a b c

d e

1 2

44
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Steensgaard Solution Procedure - 
At a glance 

•  Find all pointer assignments in program (after 
conversion to single dereference form) 

•  Form set of points-to graph nodes from 
pointer variables/fields and variables (in the 
heap or whose address has been taken) 
–  Examine each statement, in arbitrary order, and 

construct points-to edges 
•  Merge nodes (and edges) where indicated by unification 

constraints (only 1 out edge labelled * per pointer 
variable) 

•  After (almost) linear pass over these 
assignments, points-to graph is complete 
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Points-to Analysis for C 

•  Andersen’s analysis (Ph.D.Thesis 1994) 
–  Uses inclusion constraints so that for pointer 

assignments, p = q, algorithm makes  
             Pts-to(q) ⊆ Pts-to(p) 
–  Points-to graph is larger (i.e., has more nodes) than 

Steensgaard’s and more precise 
–  Cubic worst case complexity in program size, O(n3 ) 
–  One points-to set per pointer variable over entire 

program 
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Andersen - Example 

a b c

d e

1 2

int **a;
int *b,*d,*g;
int c,e,f;
1.a = &b
2.b = &c
3.d = &e
4.a = &d
5.d = &f
6.g = d
7.g = *a

4 3

f

g
5

6

6

7

a b c

d e

1 2

4 4
Steensgaard 
solution 
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Andersen’s Solution Procedure - 
At a glance 

•  Find all pointer assignments in program 
•  Form set of points-to graph nodes from pointer 

variables/fields and variables on the heap or whose 
address is taken 
–  Examine each statement, in arbitrary order, and construct 

points-to edges 
•  Need to create more edges when see p = q type 

assignments so that all outgoing points-to edges from q 
are copied to be outgoing from p (i.e. processing inclusion 
constraints)  

•  If new outgoing edges are added subsequently to q 
during the algorithm, they must be also copied to p 

•  Work results in O(n3 ) worst case cost 
–  Treat parameter - argument associations like assignment 

statements 
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Example of Points-to Analysis 
class A { void m(X p) {..} } 
 
class B extends A { 
     X f; 
     void m(X q) {  this.f=q; } 
} 
 
B b = new B(); 
X x = new X(); 
A a = b; 
a.m(x); 

q 

b oB 

a 

thisB.m f 

x oX 

Note: A.m() not analyzed  
because it’s unreachable. 
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Constraints Generated 

•  B b = new B(); {oB } ⊆ PtsTo(b)  
•  X x = new X(); {oX } ⊆ PtsTo(x)  
•  A a = b; PtsTo(b) ⊆ PtsTo(a) 
•  a.m(x);  

–  Arg-param relations cause: thism  = a; q = x; which 
generates: PtsTo(a) ⊆  PtsTo(thism), PtsTo(x) ⊆ 
PtsTo(q) 

•  Then we process the code within m() 
–  thism  .f = q  

•  A satisfying assignment for these constraints is a 
points-to solution for this code. 
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FieldSens Points-to Analysis for Java 
•  Based on Andersen’s points-to analysis but also add 

object reference fields to points-to graph as 
suffices for reference variables  
–  e.g., class A has fields f, g  then p=new A(), means p.f and p.g 

are in the points-to graph 
•  Define and solve a system of annotated set-inclusion 

constraints 
–  Handles virtual calls by simulation of run-time method lookup 
–  Models the fields of objects 
–  Extended BANE (UC Berkeley) constraint solver 

•  Analyzes only possibly executed code 
–  Ignores unreachable code from libraries 

Rountev, A. Milnova, B. Ryder, “Points-to 
Analysis for Java Using Annotated Constraints” 
OOPSLA’01 

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
32

FieldSens Example 
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}
static void g(B b2){

B b3 = b2;
b3 = new C();
b3.foo();

}

b3

oC

b1 oB

a1 oA

a2

b2

Points-to Graph 
summarizes  
reference/object  
relationships 
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FieldSens Example 
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}
static void g(B b2){

B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

a2             oB

b3           oC

oB

cf Frank Tip, OOPSLA’00 
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FieldSens Characteristics 

•  Only analyzes methods reachable from main() 
•  Keeps track of individual reference variables 

and fields 
•  Groups instances of objects by their creation 

site 
•  Incorporates reference value flow in 

assignments and method calls 
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FieldSens Findings 

•  Empirical testing found 
–  Significant precision gains over RTA at call sites 

found to be polymorphic by CHA 
–  Generated useful points-to info for client analysis 

•  Object read-write information 
•  Synchronization removal (thread-local) 
•  Stack allocation (method-local) 
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Imprecision of Context Insensitivity  

class Y extends X { … }  

class A { 
   X f; 
   void m(X q) {   

  this.f=q  ;  } 
} 

A a = new A()  ; 
a.m(new X()) ; 
A aa = new A() ; 
aa.m(new Y()) ; 

oX o1 a 

thisA.m q 

o3  aa oY f 

f 

f 

f 
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Object-sensitive Analysis 

•  A kind of functional context sensitivity for flow-
insensitive analysis of OO languages 

•  Formulate an object-sensitive Andersen’s 
(points-to) analysis 
–  Analysis of instance methods and constructors 

distinguished for different contexts 
–  Receiver objects used to distinguish calling contexts 
–  Empirical evaluation vs. context-insensitive FieldSens 

analysis 
• this, formals and return variables (effectively) replicated 
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Example: Object-sensitive Analysis 

class A { 
   X f; 
   void m(X q) {   

  this.f=q ; } 
} 

A a = new A() ; 
a.m(new X()) ; 
A aa = new A() ; 
aa.m(new Y()) ; 

oX 
f 

o1 a 

thisA.m 
o1 qA.m 

o1 
thisA.m.f=q  o1 o1 

o1 

   this.f=q ; 

o3  aa oY 

o3 thisA.m 
o3 qA.m 

thisA.m.f=q  o3 o3 

f 
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ObjSens Findings 

•  Precision gains for problems such as def-uses 
for object fields and side effect analysis (per 
statement) for practically no additional cost 

•  Clients 
–  Program test coverage metrics 
–  Program slicing 
–  Program understanding tools 

 A. Milanova, A. Rountev, and B. Ryder. Parameterized object-sensitivity for  
points-to and side-effect analyses for Java. In International Symposium on 
 Software Testing and Analysis, pages 1–11, 2002.Followup TOSEM paper 2005. 


