
1

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder 1

OOPLs - call graph construction

•  Compile-time analysis of reference variables
and fields
–  Problem: how to resolve virtual function calls?

•  Need to determine to which objects (or types of
objects) a reference variable may refer during execution

–  Type hierarchy-based methods
•  Class hierarchy analysis (CHA)
•  Rapid type analysis (RTA)

–  Flow-based methods
•  Field-sensitive, flow-insensitive, context-insensitive

reference (i.e., points-to) analysis

OOPLs-CallGrphConstruct, CS5314 Sp2016
BGRyder 2

Example – executed calls
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}
static void g(B b2){

B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

cf Frank Tip, OOPSLA’00

A

B

C D

2

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder 3

Reference Analysis

•  OOPLs need type information about objects
to which reference variables can point to
resolve dynamic dispatch

•  Often data accesses are indirect to object
fields through a reference, so that the set of
objects that might be accessed depends on
execution-time values of reference variables

•  Need to pose this as a compile-time program
analysis with representations for reference
variables/fields, objects and classes.

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
4

Reference Analysis
•  Different algorithms and program representation

choices affect precision and cost
–  Class analyses use an abstract object (with or without

fields) to represent all objects of a class
–  Points-to analyses use object instantiations, grouped

by some mechanism (e.g., creation sites)
•  The analysis can incorporate information about

flow of control in the program or ignore it
–  Flow sensitivity (accounts for statement order)
–  Context sensitivity (separates calling contexts)

3

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
5

Reference Analysis

•  Program representation used for analysis can
incorporate reachability of methods as part
of the analysis or can assume all methods are
reachable

•  Techniques can be differentiated by their
solution formulation (that is, kinds of
relations:
–  e.g., for reference assignments

 p = q, interpreted as
 Pts-to(q) ⊆ Pts-to(p) vs. Pts-to(q) = Pts-to(p)

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
6

Class Hierarchy Analysis
•  Earliest method for reference analysis was

CHA by Craig Chamber’s group (UWashington)
–  Idea: look at class hierarchy to determine what

classes of object can be pointed to by a reference
declared to be of class A,

•  in Java this is the subtree in inheritance hierarchy rooted
at A, cone (A)

–  Makes assumption that whole program is available
and that all methods are reachable

–  Ignores flow of control
–  Uses 1 abstract object per class
–  Cheap, very approximate. safe

J. Dean, D. Grove, C. Chambers, Optimization of OO Programs Using Static
Class Hierarchy, ECOOP’95

4

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
7

CHA Example
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}

static void g(B b2){
B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

cf Frank Tip, OOPSLA’00

A

B

C D

Cone(Declared_type(receiver))

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
8

CHA Example
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}
static void g(B b2){

B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

main

A.foo() B.foo() C.foo() D.foo()

f(A) g(B)

Call Graph

5

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
9

More on CHA
•  Type of receiver needn’t be uniquely resolvable

to de-virtualize a call
–  Need applies-to set for each method (the set of

classes for which this method is the target when
the run-time type of the receiver is one of those
classes)

•  At a call site, take set of possible classes for receiver and
intersect that with each possible method’s applies-to set.

•  If only one method’s set has a non-empty intersection,
then invoke that method directly

•  Otherwise, need to use dynamic dispatch at runtime
–  Also can use run-time checks of actual receiver type

(through reflection) to cascade through a small
number of choices for direct calls, given predictions
due to static or dynamic analysis

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
10

Rapid Type Analysis

•  Improves CHA
•  Constructs call graph on-the-fly, interleaved

with the analysis
•  Key idea: only expands calls if has seen an

instantiated object of appropriate type
–  Ignores classes which have not been instantiated

as possible receiver types
•  Makes assumption that whole program is

available and that all methods are reachable
•  Uses 1 abstract object per class

D. Bacon and P. Sweeney, “Fast Static Analysis of C++
Virtual Function Calls”, OOPSLA’96

6

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
11

RTA Example
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}

static void g(B b2){
B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

cf Frank Tip, OOPSLA’00

A

B

C D

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
12

RTA Example
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}
static void g(B b2){

B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

main

A.foo() B.foo() C.foo() D.foo()

f(A) g(B)

Call Graph

7

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
13

Comparisons
class A {
public :
 virtual int foo(){ return 1; };
};
class B: public A {
public :
 virtual int foo(){ return 2; };
 virtual int foo(int i) { return i+1; };
};
void main() {
 B* p = new B;
 int result1 = p->foo(1);
 int result2 = p->foo() ;
 A* q = p;
 int result3 = q->foo();
}

CHA resolves result2 call uniquely
to B.foo() because B has no
subclasses, however it cannot do the
same for the result3 call.
RTA resolves the result3 call uniquely
because only B has been instantiated.

Bacon-Sweeney, OOPSLA’96

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
14

Type Safety Limitations

•  CHA and RTA both assume type safety of the
code they examine
//#1
void* x = (void*) new B
B* q = (B*) x;//a safe downcast
int case1 = q->foo()
//#2
void* x = (void*) new A
B* q = (B*) x;//an unsafe downcast
int case2 = q->foo()//probably no error
//#3
void* x = (void*) new A
B* q = (B*) x;//an unsafe downcast
int case3 = q->foo(666)//runtime error

A

B

foo()

foo()
foo(int)

These analyses can’t distinguish these 3 cases!

Bacon-Sweeney, OOPSLA’96

8

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
15

Experimental Comparison
Bacon and Sweeney, OOPSLA’96

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
16

Data Characteristics

•  Frequency of execution matters
–  Direct calls were 51% of static call sites but only

39% of dynamic calls
–  Virtual calls were 21% of static call sites but were

36% of dynamic calls
•  Results they saw differed from previous

studies of C++ virtuals
–  Importance of benchmarks
–  Paper was at a time when C++ programs were

usually transformed C codes (didn’t use virtual
methods as much as modern codes)

9

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
17

Findings

•  RTA was better than CHA on virtual function
resolution, but not on reducing code size
–  Inference is that call graphs constructed have

same node set but not same edge set!
•  Claim both algorithms cost about the same

because the dominant cost is traversing the
cfg’s of methods and identifying call sites,
can pick up object creations during traversal

•  Claim that RTA is good enough for call graph
construction so that more precise analyses
are not necessary for this task

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
18

Dimensions of Analysis

•  How to achieve more precision in analysis for
increased cost?
–  Incorporate flow in and out of methods
–  Refine abstract object representing a class to

include its fields
–  Incorporate locality of reference usage in

program into analysis rather than 1 ‘references’
solution over the entire program

–  Always use reachability criteria in constructing
call graph

10

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
19

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
20

Points-to Analysis for Java

•  Points-to analysis traces flow of values
through pointers (or reference variables and
fields) in order to resolve virtual calls and
trace side effects through indirect writes

•  Historical roots in points-to analysis for C
–  Steensgaard’s algorithm
–  Andersen’s algorithm
–  Flow- and context sensitivity

•  Field-sensitive analysis for Java
–  Based on Andersen for C augmented with handling

for fields and dynamic dispatch

11

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
21

Flow & Context Sensitivity
in Program Analysis

•  Flow sensitivity
–  Analysis calculates a different solution at each

program point
–  Analysis captures the sequential order of

executions of statements
–  Expensive and highly accurate

•  Context sensitivity
–  Analyze a method separately for different calling

contexts (e.g., call sites)
–  Required often for accuracy for security and side

effects clients

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
22

Points-to Analyses for C

•  Popular flow- and context-insensitive
formulations of points-to analysis
–  Scalable to large codes (MLOC)
–  Good enough for ensuring safety of some optimizations
–  Good for program understanding applications
–  Not great for applications needing precise def-use information

(e.g., program slicing, testing)

•  Solution procedure utilizes unification or
inclusion constraints
–  P = Q either implies PtsTo(P) = PtsTo(Q) or PtsTo(Q) ⊆ PtsTo(P)

•  Extended to points-to analyses for OOPL
reference variables/fields

12

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
23

Points-to Analyses for C

•  Bjarne Steensgaard’s algorithm (POPL’96)
–  Uses unification constraints so that for pointer

assignments, p = q, algorithm makes PtsTo(p)=PtsTo(q)
•  This union operation is done recursively for multiple-level pointers

–  Reduces the size of the points-to graph (in terms of
both nodes and edges)

•  Almost linear solution time in terms of program size, O(n) using fast
union-find algorithm

•  Imprecision stems from merging points-to sets

–  One points-to set per pointer variable over entire
program

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
24

Steensgaard - Example
a b c

d e

1 2 a b c

d e

1 2

1. a = &b
2. b = &c
3. d = &e
4. a = &d

cf M Shapiro and S. Horwitz, “Fast and Accurate
Flow-insensitive Points-to Analysis” POPL’97

PtsTo(a)={b,d}
PtsTo(b,d)={c,e}

Points-to sets found:

3
4

a b c

d e

1 2

44

13

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
25

Steensgaard Solution Procedure -
At a glance

•  Find all pointer assignments in program (after
conversion to single dereference form)

•  Form set of points-to graph nodes from
pointer variables/fields and variables (in the
heap or whose address has been taken)
–  Examine each statement, in arbitrary order, and

construct points-to edges
•  Merge nodes (and edges) where indicated by unification

constraints (only 1 out edge labelled * per pointer
variable)

•  After (almost) linear pass over these
assignments, points-to graph is complete

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
26

Points-to Analysis for C

•  Andersen’s analysis (Ph.D.Thesis 1994)
–  Uses inclusion constraints so that for pointer

assignments, p = q, algorithm makes
 Pts-to(q) ⊆ Pts-to(p)
–  Points-to graph is larger (i.e., has more nodes) than

Steensgaard’s and more precise
–  Cubic worst case complexity in program size, O(n3)
–  One points-to set per pointer variable over entire

program

14

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
27

Andersen - Example

a b c

d e

1 2

int **a;
int *b,*d,*g;
int c,e,f;
1.a = &b
2.b = &c
3.d = &e
4.a = &d
5.d = &f
6.g = d
7.g = *a

4 3

f

g
5

6

6

7

a b c

d e

1 2

4 4
Steensgaard
solution

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
28

Andersen’s Solution Procedure -
At a glance

•  Find all pointer assignments in program
•  Form set of points-to graph nodes from pointer

variables/fields and variables on the heap or whose
address is taken
–  Examine each statement, in arbitrary order, and construct

points-to edges
•  Need to create more edges when see p = q type

assignments so that all outgoing points-to edges from q
are copied to be outgoing from p (i.e. processing inclusion
constraints)

•  If new outgoing edges are added subsequently to q
during the algorithm, they must be also copied to p

•  Work results in O(n3) worst case cost
–  Treat parameter - argument associations like assignment

statements

15

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
29

Example of Points-to Analysis
class A { void m(X p) {..} }

class B extends A {
 X f;
 void m(X q) { this.f=q; }
}

B b = new B();
X x = new X();
A a = b;
a.m(x);

q

b oB

a

thisB.m f

x oX

Note: A.m() not analyzed
because it’s unreachable.

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
30

Constraints Generated

•  B b = new B(); {oB } ⊆ PtsTo(b)
•  X x = new X(); {oX } ⊆ PtsTo(x)
•  A a = b; PtsTo(b) ⊆ PtsTo(a)
•  a.m(x);

–  Arg-param relations cause: thism = a; q = x; which
generates: PtsTo(a) ⊆ PtsTo(thism), PtsTo(x) ⊆
PtsTo(q)

•  Then we process the code within m()
–  thism .f = q

•  A satisfying assignment for these constraints is a
points-to solution for this code.

16

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
31

FieldSens Points-to Analysis for Java
•  Based on Andersen’s points-to analysis but also add

object reference fields to points-to graph as
suffices for reference variables
–  e.g., class A has fields f, g then p=new A(), means p.f and p.g

are in the points-to graph
•  Define and solve a system of annotated set-inclusion

constraints
–  Handles virtual calls by simulation of run-time method lookup
–  Models the fields of objects
–  Extended BANE (UC Berkeley) constraint solver

•  Analyzes only possibly executed code
–  Ignores unreachable code from libraries

Rountev, A. Milnova, B. Ryder, “Points-to
Analysis for Java Using Annotated Constraints”
OOPSLA’01

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
32

FieldSens Example
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}
static void g(B b2){

B b3 = b2;
b3 = new C();
b3.foo();

}

b3

oC

b1 oB

a1 oA

a2

b2

Points-to Graph
summarizes
reference/object
relationships

17

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
33

FieldSens Example
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}
static void g(B b2){

B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

a2 oB

b3 oC

oB

cf Frank Tip, OOPSLA’00

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
34

FieldSens Characteristics

•  Only analyzes methods reachable from main()
•  Keeps track of individual reference variables

and fields
•  Groups instances of objects by their creation

site
•  Incorporates reference value flow in

assignments and method calls

18

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
35

FieldSens Findings

•  Empirical testing found
–  Significant precision gains over RTA at call sites

found to be polymorphic by CHA
–  Generated useful points-to info for client analysis

•  Object read-write information
•  Synchronization removal (thread-local)
•  Stack allocation (method-local)

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
36

Imprecision of Context Insensitivity

class Y extends X { … }

class A {
 X f;
 void m(X q) {

 this.f=q ; }
}

A a = new A() ;
a.m(new X()) ;
A aa = new A() ;
aa.m(new Y()) ;

oX o1 a

thisA.m q

o3 aa oY f

f

f

f

19

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
37

Object-sensitive Analysis

•  A kind of functional context sensitivity for flow-
insensitive analysis of OO languages

•  Formulate an object-sensitive Andersen’s
(points-to) analysis
–  Analysis of instance methods and constructors

distinguished for different contexts
–  Receiver objects used to distinguish calling contexts
–  Empirical evaluation vs. context-insensitive FieldSens

analysis
• this, formals and return variables (effectively) replicated

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
38

Example: Object-sensitive Analysis

class A {
 X f;
 void m(X q) {

 this.f=q ; }
}

A a = new A() ;
a.m(new X()) ;
A aa = new A() ;
aa.m(new Y()) ;

oX
f

o1 a

thisA.m
o1 qA.m

o1
thisA.m.f=q o1 o1

o1

 this.f=q ;

o3 aa oY

o3 thisA.m
o3 qA.m

thisA.m.f=q o3 o3

f

20

OOPLs-CallGrphConstruct, CS5314 Sp2016 BGRyder
39

ObjSens Findings

•  Precision gains for problems such as def-uses
for object fields and side effect analysis (per
statement) for practically no additional cost

•  Clients
–  Program test coverage metrics
–  Program slicing
–  Program understanding tools

 A. Milanova, A. Rountev, and B. Ryder. Parameterized object-sensitivity for
points-to and side-effect analyses for Java. In International Symposium on
 Software Testing and Analysis, pages 1–11, 2002.Followup TOSEM paper 2005.

