
1

OOPLs-Inheritance, CS5314 Sp2016 © BGRyder 1

OOPLs - Inheritance

•  Desirable properties
•  Models of inheritance

–  Class-based
•  Single
•  Multiple

–  Delegation
–  Mix-ins

•  Functionality
–  Code reuse versus subtyping

OOPLs-Inheritance, CS5314 Sp2016 © BGRyder 2

Inheritance

•  Data abstraction (encapsulation) plus
inheritance defines the OO paradigm

•  How to model inheritance to achieve flexibility,
ease of code reuse, extensibility of software,
yet maintain encapsulation?

•  Example PLs: Simula67, Smalltalk-80, C++ ,
Modula-3, Java, C#, Python, JavaScript,…

2

OOPLs-Inheritance, CS5314 Sp2016 © BGRyder 3

Defining Inheritance - Qs

•  Should inheritance be at the level of classes
or objects?

•  How should multiple inheritance be defined?
•  Is inheritance a form of subtyping or just

code reuse?
–  Is-a inheritance versus efficiency in coding (e.g.,

interfaces)
•  How should modification of inherited

properties be constrained?

OOPLs-Inheritance, CS5314 Sp2016 © BGRyder 4

Inheritance- More Qs
“Concepts and Paradigms of OOP”, Peter Wegner, OOPS Messenger, vol 1 no

1 Aug 1990. (expanded from an OOPSLA89 keynote)
•  A mechanism for sharing code and behavior
•  Should we modify inherited attributes?
•  Do we inherit at the level of classes or

instances (i.e., delegation)?
•  How is multiple inheritance to be defined and

managed?
•  What should be inherited? behavior? code?

both?

3

OOPLs-Inheritance, CS5314 Sp2016 © BGRyder 5

Inheritance Behavior Choices
•  No refinement of parent class behavior or

attributes by subclass
•  Subclass behavior is compatible with parent

class
–  Behavior compatibility – subclass preserves

behavior of parent class on operations
•  B refines A (preserves and augments A’s properties) versus B is

like A (share common properties)
•  What is meant? E.g., Int (1..10) is a subtype of Int; Int is a

subtype of Real
–  Signature compatibility – compiler can check usages

are syntactically correct
•  E.g., using subtypes as parameters
•  Note this does not distinguish different behaviors with same API

Wegner 1990

Inheritance Behavior Choices

–  Name compatibility – superclass method names
preserved (but method body possibly refined) in
subclass

•  Method redefinition is totally unconstrained; new def could
have different #args and different effect from same-
named method in parent class

–  Cancellation - unrestricted modification of parent
class by subclass

•  Can cancel parent class attributes (e.g., ostriches as a non-flying
bird in Bird class)

•  Most common class-based OOPLs do not allow this kind of
inheritance

OOPLs-Inheritance, CS5314 Sp2016 © BGRyder 6

Wegner 1990

4

Granularity of Inheritance
•  Class-based inheritance

•  All objects share same attributes and behavior
•  Sometimes have different shared behaviors provided by

multiple classes as parent classes

•  Delegation – inheritance at object-level
•  Objects delegate nonlocal operations to parent instances

called prototypes (e.g., JavaScript)
•  Prototypes are templates and instances themselves and

have both sharable properties and methods
•  Useful for types that have only a single instance
•  E.g., SELF PL designed by David Unger in 1980s

OOPLs-Inheritance, CS5314 Sp2016 © BGRyder 7

Wegner 1990

OOPLs-Inheritance, CS5314 Sp2016 © BGRyder 8

Inheritance Granularity
•  Class-based (ST-80, Java, C++. C#)
•  Delegation - behavior and value sharing at the

level of objects
•  Especially good for things that will have only one instance

•  Tradeoffs
•  Claim is that delegation may introduce more complexity in

executing operations, but may be more storage efficient
(e.g., turtle example p 41)

•  Storage is distributed among the prototype objects (i.e.,
prototype objects can themselves inherit from other
prototype objects)

Wegner 1990

5

OOPLs-Inheritance, CS5314 Sp2016 © BGRyder 9

Delegation Example, Liebermann, OOPSLA’86)
Pen Class:
x,y
create()
draw()
color

Turtle Class:
heading
backwards()
forwards()

subclass_of

<50,200,blue>

<100,200,_>

pen instances

50, 200
 x, y
draw() 100

 x

delegates to

90 degrees
heading
backwards()
forwards()

pen prototype

pen prototype

turtle prototype

CLASSES

DELEGATION

<50, 200, _,90deg>

turtle instance

delegates to

OOPLs-Inheritance, CS5314 Sp2016 © BGRyder 10

Desirable Properties for
Class-based Inheritance

A. Snyder, “Inheritance and the Development of Encapsulated SW Components”,
HICSS20, 1987

•  Two kinds of users of class attributes and
methods: subclasses and external clients
–  Must consider different sorts of sharing/access
–  Only want external clients to see APIs of methods,

no rep type, no instance vars to preserve
encapsulation and to allow redesign of the class
implementation and rep type

6

Desirable Properties

•  May want to allow descendent classes to have
full access to instance variables
–  Problem: Smalltalk-80 & Objective-C allowed full

access to instance variables of class by a
descendent class

•  But then how allow change to the rep type in ancestor
class?

•  Soln: Require descendent class to use ancestor class access
operations for inherited state

OOPLs-Inheritance, CS5314 Sp2016 © BGRyder 11

Snyder 1987

Desirable Properties

•  Should not expose inheritance of members to
external clients of a class
–  Smalltalk-80 allowed complete access to members

by external clients (and subclasses) compromising
encapsulation

–  C++/Java added protected access control to instance
variables

OOPLs-Inheritance, CS5314 Sp2016 © BGRyder 12

Snyder 1987

7

OOPLs-Inheritance, CS5314 Sp2016 © BGRyder 13

Desirable properties

•  Avoid exposure of class hierarchy itself, so
class designer can change hierarchy without
external clients noticing
–  Should not be able to distinguish inherited

behaviors from defined ones
–  Should always access ancestor class members

through the immediate base class
•  in C++ need chain of public classes for a user to access

members
–  Should be able to exclude base class operations

•  Java, C++ private inheritance
•  Smalltalk-80 had excludes attribute for subclasses

Snyder 1987

OOPLs-Inheritance, CS5314 Sp2016 © BGRyder 14

How can use inheritance?
•  Many possibilities for why use inheritance

–  Specialization (subtyping (is-a), usually assumed in
Java, although can have subtyping while redefining
implementation: OrderedSets vs. Sets)

–  Specification - parent has abstract (i.e., virtual)
behavior while concrete behavior is defined in child
class

–  Extension - child merely extends parent class
behaviors

–  Limitation - child excludes some behavior inherited
from parent

–  Combination - multiple inheritance construction -
–  Code sharing but not through an is-a relation

(private inheritance in C++, see dequeue example)

8

OOPLs-Inheritance, CS5314 Sp2016 © BGRyder 15

Inheritance

•  As subtyping
–  Inheriting implementation and external specification
–  S is subtype of T if all operations on type T objects

are meaningful on S objects;
•  Behavioral substitutability

•  As code reuse
–  Inheriting only implementation; not necessarily an is-a

relation
–  Building new components from old
–  E.g., interfaces in Java – common functionality, but

not typical class inheritance

OOPLs-Inheritance, CS5314 Sp2016 © BGRyder 16

Example
•  Two ways to define queue and dequeue

Queue
 append()
 remove()

Dequeue
 InsertAtFront()
 RemoveFromRear()

As subtyping -
similar behavior with
added methods

Queue
 exclude:
 InsertAtFront()
 RemoveFrRear()

Stack
 exclude:
 RemoveFrFront()
 InsertAtFront()

Dequeue
 InsertAtFront()
 InsertAtRear()
 RemoveFrFront()
 RemoveFrRear()

As code reuse -
inheritance with exclusion

Inherits from

Dequeue is subtype
of both Stack and Queue
but inherits from neither

9

OOPLs-Inheritance, CS5314 Sp2016 © BGRyder 17

Inheritance

•  Multiple versus single
–  Real world is multiple

inheritance
–  Linearizing lookup

•  Problem: interpretation
depends on non-local
inheritance structure, not
robust in face of changes

–  No problem if no conflicts

food

fruit spice

apple cinnamon

 pie

Linearized:pie, apple, fruit,
cinnamon, spice, food

OOPLs-Inheritance, CS5314 Sp2016 © BGRyder 18

Class-based Inheritance
Choices in PLs

•  Single inheritance (Smalltalk-80 adapted from
Simula) - easier

•  Multiple inheritance (C++, Java)
–  Problem: how to avoid inheriting more than one copy

of multiply inherited instance variables or member
functions from same ancestor through more than one
path?

•  Can linearize hierarchy for lookup purposes (Clos, Flavors)
•  Can exclude some inherited members (CommonObjects, C++)
•  Can define it away at user option (accomplish multiple

inheritance by use virtual base class inheritance in C++ ; use
interfaces in Java)

10

OOPLs-Inheritance, CS5314 Sp2016 © BGRyder 19

Multiple Inheritance Conflict
Resolution

•  Problems:
–  Member clash
–  Inheriting more than one copy of same member

•  Approaches
–  Linearize hierarchy so only one parent is

“closest” (CLOS, Flavors)
–  Throw an exception when same member is applied

more than once due to duplicate paths
–  Exclude some members to avoid problem (C++)

A f() B f()

 C

 X g()
Y Z
 W

OOPLs-Inheritance, CS5314 Sp2016 © BGRyder 20

Multiple Inheritance

•  Needed to describe certain complex is-a
relationships (non-overlapping attributes)

Animal

Carnivore Herbivore

Cat

Leopard

Endangered
species

Bear Cow

Panda Polar

11

OOPLs-Inheritance, CS5314 Sp2016 © BGRyder 21

Multiple Inheritance
Conflict Resolution

•  Actual solutions
–  Disallow multiple inheritance (ST-80)
–  Allow inheritance of indistinguishable components

but only one of them (set at defn time) (CLOS, C++)
–  Take approach #2 but pick inherited member at use

time (C++, <baseclass>::f())
–  Combine inherited components into one new

component (like flattening the hierarchy) (Flavors)

OOPLs-Inheritance, CS5314 Sp2016 © BGRyder 22

A. Snyder’s Mix-in Classes

•  Use of disjoint parent classes with desired behaviors
•  Reminiscent of Java’s interfaces

virtual class window

bordered_window window_w_menu

window_w.border+menu

From Stroustrup,
The C++ PL

12

OOPLs-Inheritance, CS5314 Sp2016 © BGRyder 23

Example

virtual class window

bordered_window window_w_menu

window_w.border+menu

_draw()
draw()

_draw()
draw()

_draw()
draw(){window::_draw();

 _draw(); }

_draw()
draw(){ window::_draw();
 bordered_window::_draw();
 window_w_menu::_draw();
 _draw(); }

draw() calls _draw() and
does work for base case
_draw() does what’s
specific to its class.

OOPLs-Inheritance, CS5314 Sp2016 © BGRyder 24

More on Mix-in Inheritance

•  Mix-in - an ‘abstract’ subclass
–  “A subclass definition that can be applied to

different superclasses to create a related family of
modified classes” (Bracha-Cook,OOPSLA90)

•  Idea: mix-in can be used to specialize the
behavior of a variety of parent classes
–  Often by defining methods to perform specific

actions and then call the corresponding parent
methods

13

OOPLs-Inheritance, CS5314 Sp2016 © BGRyder 25

Java Example
class Parent
{public P(int value) {this.val = value;}
 public int getvalue(){return this.val;}
 public toString() {return “” + this.val;}
 private int val;
}
class Other
{public Other(int value){..}
 public void f(){…}
}
interface OtherInterface
{ void f();}
class OtherChild extends Other implements OtherInterface
{public OtherChild(int value) { super(value);}
}

cf http://csis.pace.edu/~bergin/patterns/multipleinheritance.html

class ParentChild extends Parent
implements OtherInterface
{ public ParentChild(..)
 {child = new OtherChild(..);…
}
public void f(){child.f();}
private final OtherInterface child;

We have merged the implementations
of 2 classes - Parent, Other -- without
modifying either one!

Use of child is
effectively use
of delegation

