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OOPLs – Semantic Foundations 

•  Barbara Liskov’s CLU language – first 
specification of data abstraction 
–  Defining semantics of methods 
–  Defining a data abstraction and its methods 

•  Mutability 
•  Rep type (concrete representation of the data 

abstraction) 
•  Equality checking 

–  Collections and iterators in Java and C++ 
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Data Abstraction – Foundation of 
OOPLs 

Historical roots of semantics of data 
abstraction: 
 CLU language (Barbara Liskov and John Guttag, 
“Abstraction and Specification in Program Development”,  

    now out of print)  
–  Encapsulation 
–  Specification of abstract datatypes 

•  requires, modifies, effects 
–  Mutability 
–  Equality checking 
–  Abstraction function & rep invariant 
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Data Abstraction and OOPLs 

CLU language (B.Liskov and J.Guttag, “Abstraction and 
Specification in Program Development”, out of print)  

 
–  Abstraction interface 

•  Mutators, Observers, Constructors  
•  Abstraction function 
•  Representation invariant 

–  Iterators - C++ and Java examples 
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Data Abstraction 

•  Can use any internal representation for 
storing queues as long as can make it 
behave like a queue.  

•  Interface to the queue data abstraction is 
the same, no matter what the rep type. 
–  Knowledge of interface is sufficient to use this 

queue code; (centralized dependence) 
–  Users can’t change the abstraction unless 

allowed by interface. 
–  Can change rep type for efficiency without 

disturbing users of the abstraction  
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Example - Queue 

•  Type: first in, first out storage discipline 
•  Operations: 

–  enqueue(q,x) - adds x onto queue q 
–  qnull(q) - returns boolean check if q is empty 
–  qhd(q) - selects front element of queue q 
–  dequeue(q) - yields queue obtained by removing 

front element of queue q 
–  Qerror - exception raised by qhd or dequeue 

applied to an empty queue 
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Specification 
•  queue is a data abstraction containing 

integers following a first in, first out 
discipline. 

•  Implementation separated from specification 
•  Operation described in terms of its type 

signature, what it modifies, what it requires 
as a precondition and its effect 
–  For templates (generics) allows use of type 

parameter 
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Possible Implementations – 
choosing a rep type 

•  Using ‘a-list 
enqueue(q,x) = q @ [x]; (*costly, sum of lengths of 2 lists*) 
dequeue(x::q) = q   (*cheap*)| dequeue nil = raise Qerror; 
•  Using user-defined datatype 
datatype ‘a queue = empty | enqueue of ‘a queue * ‘a  
fun dequeue (enqueue (empty,x)) = empty | 
fun dequeue (enqueue(q,x)) = enqueue ((dequeue q), x) | 
fun dequeue (empty) = raise Qerror; 
•  Using 2 ‘a-lists (one for adding and one for 

removing and then have to switch when run out of 
removing list) 

datatype ‘a queue = Queue of (‘a list * ‘a list) 
normal form for this representation is maintained by function norm 

which has to be called after every removal of an element. 
fun norm (Queue ([ ],tail) = Queue ((reverse tail),[ ])  | norm q = q; 
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CLU Specification 

•  Requires = constraints on the use of an 
operation, if any 

•  Modifies = side effects on inputs 
•  Effects = defines operation behavior on 

allowed inputs 
•  Claim: Although imprecise because uses 

natural language, much better than having 
no comments to specify function behavior 
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Operations Specification 
enqueue =  proc (q:queue, x: int) returns (queue) 
 modifies: q 
 effects: Adds x to q 

dequeue = proc (q:queue) returns (queue) 
 modifies: q 
 requires: q  be nonempty 
 effects:  Returns q with one less element. 

qhd = proc (q:queue) returns (int) 
 effects: Returns element at head of q 
 requires: q be nonempty. 

Qnull = proc (q:queue) returns (bool) 
 effects: Returns true if q is empty, else false. 
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Mutability 
•  Mutable data abstractions have values 

which can change during execution. 
–  Used to model real-world entities  
–  Tricky to manage for shared objects 
–  Destructive operations are performed; more 

space efficient 
•  Mutability is property of the abstract data 

type, NOT the implementation 
–  Mutable types need mutable rep types 
–  Immutable types can use mutable or immutable 

rep types 
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Mutability 

•  Immutable data abstractions are assign-once 
variables 
–  E.g., integers, points in a plane 
–  Safer for shared objects 
–  Operations on this type return new object of the 

type with altered values. 
–  Creates need for garbage collection 
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Classes of Operations 

•  Constructors 
–  Create objects of a datatype 

•  Mutators 
–  Modify objects of a datatype - enqueue, 

dequeue 
•  Observers 

–  Given object of a datatype, return values 
related to that object - qnull, qhd 
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Equality Checking 

•  Need to provide in the interface 
•  Can use a canonical representation 

–  E.g., rationals, R = Rat of int * int; 
fun make (a,b:int) = Rat (a,b).  Then val x=make(1,2); 

val y=make(5,10); x=y isn’t true! 
However, the following works: 
make2(a,b)=(Rat(a div gcd(a,b), b div gcd(a,b))); 

•  Can also create own equality function within the 
abstraction 
Eg., fun equalrat(Rat(a,b),Rat(c,d)) = (a*d = c*b) 
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Abstract Datatype 

•  Can refer to an abstract datatype and its 
rep type separately  

•  Can refer to the mappings between these 2 
worlds 
–  Abstraction Function: maps a rep object to its 

corresponding abstract datatype object; defines 
meaning of the representation 

–  Representation Invariant: statement of a 
property that all legitimate reps of abstract 
objects satisfy 
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Abstraction Function 
•  More than 1 rep value may represent same 

abstract value 
–  Integer sets represented in arrays 
 [1,2] and [2,1] both are array reps of {1,2} 

{1,2} 
Integer sets {7} 

[1,2]     [2,1]     [7] 
Rep type is int arrays 
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Representation Invariant 
•  Think about (x,y) coordinates represented by 

polar coordinates (length,angle).  
g(r) = (r.ln *cos(r.ang), r.ln * sin(r.ang)) 
Then Invar( r )= (r.ln>0 and 0<= r.ang <=2π) or 
                         (r.ln = 0 and r.ang = 0) 

•  For int sets represented as an int array R, 
Invar(R) = for all k,j,low (R) <= k < j <= high(R) 
and R[k] != R[j] (since sets have no multiple 

elements) 
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CLU Generic Functions 
Search function on character data: 
search = proc (v:char, b: array of char) returns (x:bool) 

 requires: b sorted in non-decreasing order 
 effects: true returned iff b[j]=v for some j 

Generic search function: 
search = proc [t:type](v:t, a: array[t]) returns (bool) 

 requires: t has operations equal, lt: proctype (t,t) 
returns (bool) such that t is totally ordered by lt, and 
a is sorted in ascending order based on lt 
 effects: if v is in a, returns j such that a[j]=v; 
otherwise, returns high(a)+1 (i.e.,upper bnd on a +1) 
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Iterators 

•  If abstract datatype is a collection of 
objects, you may want to examine each 
object in the collection 

•  How to accomplish this? 
–  Write a function in the interface that extracts 

the objects, 1 by 1, performs some calculation 
on them and then recreates the collection 

–  Copy the objects in the collection to an 
immutable type object. Return that object to 
the user to use 
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Iterators 

•  Provide a special function for the abstract 
datatype: an iterator 
elements = iter (s:intset) yields (int) 
requires: s not be modified by calling loop body 

(or consequences can’t be determined) 
effects: yields elements of s one by one  in 

arbitrary order 
•  Iterators can be nested 

–  They operate as though each has its own copy 
of the collection.  
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Enumerations in Java 

•  Java - Enumeration object keeps copy of 
collection or a copy of a reference to it 
–  Affects whether or not changing the collection 

while iterating disturbs the enumeration 
–  Use polymorphic container class and then 

downcast to proper object type 
•  e.g., SetEnumeration returns Object type; needs to 

be cast to actual type at each use 

–  Enumeration is a Java interface with standard 
functions that classes which implement it must  
provide 
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C++ Iterator Example 
class stack { private: elt *s; int top; friend class stack_iter;  

 const int EMPTY = -1;   
 public: stack(){s = new elt[100]; top = -1;} …} 

class stack_iter{//will enumerate stack from bottom to top of 
stack 
 private: elt *st; int n; int t; 
 //invariant: elements in st[0..n] have already been returned

      
     stack_iter(stack &goOver){ // creates copy of stack 

  t = goOver.top;  
  st = new elt[t+1]; 
  for (int j=0; j<=t; ++j) 
         st[ j]=goOver.s[j]; 
  n = goOver.EMPTY;} //initializes subscript pointing into 
copy 
 boolean getNext(elt &val){ 
  if (n < t) {val = st[++n]; return 1;} else return 0; 

      } } 
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Where to put iterators in C++ 

•  Can’t define iterator as subclass of the 
collection class 
–  Because then each iterator could only work with 

respect to one collection object 
•  Can’t define iterator as member of the 

collection class 
–  Because member functions have no way to 

preserve state between calls (class vars are not 
enough since they are shared by all objects) 
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Iterators in C++  

•  There is NO natural subtyping relation 
between iterators and the collections they 
iterate over! 

•  Solution - break encapsulation to create an 
iterator 
–  Use  friend  methods which lets iterator see 

into the private collection instance variables 


