
1

OOPLs – Semantic Foundations

•  Barbara Liskov’s CLU language – first
specification of data abstraction
–  Defining semantics of methods
–  Defining a data abstraction and its methods

•  Mutability
•  Rep type (concrete representation of the data

abstraction)
•  Equality checking

–  Collections and iterators in Java and C++

ΟΟΠΛσΦουνδατιονσ, ΧΣ5314 Σπ2016, Β.Γ.Ρψδερ 1

OOPLsFoundations, CS5314 Sp2016, B.G.Ryder
2

Data Abstraction – Foundation of
OOPLs

Historical roots of semantics of data
abstraction:
 CLU language (Barbara Liskov and John Guttag,
“Abstraction and Specification in Program Development”,

 now out of print)
–  Encapsulation
–  Specification of abstract datatypes

•  requires, modifies, effects
–  Mutability
–  Equality checking
–  Abstraction function & rep invariant

2

OOPLsFoundations, CS5314 Sp2016, B.G.Ryder 3

Data Abstraction and OOPLs

CLU language (B.Liskov and J.Guttag, “Abstraction and
Specification in Program Development”, out of print)

–  Abstraction interface

•  Mutators, Observers, Constructors
•  Abstraction function
•  Representation invariant

–  Iterators - C++ and Java examples

OOPLsFoundations, CS5314 Sp2016, B.G.Ryder 4

Data Abstraction

•  Can use any internal representation for
storing queues as long as can make it
behave like a queue.

•  Interface to the queue data abstraction is
the same, no matter what the rep type.
–  Knowledge of interface is sufficient to use this

queue code; (centralized dependence)
–  Users can’t change the abstraction unless

allowed by interface.
–  Can change rep type for efficiency without

disturbing users of the abstraction

3

OOPLsFoundations, CS5314 Sp2016, B.G.Ryder 5

Example - Queue

•  Type: first in, first out storage discipline
•  Operations:

–  enqueue(q,x) - adds x onto queue q
–  qnull(q) - returns boolean check if q is empty
–  qhd(q) - selects front element of queue q
–  dequeue(q) - yields queue obtained by removing

front element of queue q
–  Qerror - exception raised by qhd or dequeue

applied to an empty queue

OOPLsFoundations, CS5314 Sp2016, B.G.Ryder 6

Specification
•  queue is a data abstraction containing

integers following a first in, first out
discipline.

•  Implementation separated from specification
•  Operation described in terms of its type

signature, what it modifies, what it requires
as a precondition and its effect
–  For templates (generics) allows use of type

parameter

4

OOPLsFoundations, CS5314 Sp2016, B.G.Ryder 7

Possible Implementations –
choosing a rep type

•  Using ‘a-list
enqueue(q,x) = q @ [x]; (*costly, sum of lengths of 2 lists*)
dequeue(x::q) = q (*cheap*)| dequeue nil = raise Qerror;
•  Using user-defined datatype
datatype ‘a queue = empty | enqueue of ‘a queue * ‘a
fun dequeue (enqueue (empty,x)) = empty |
fun dequeue (enqueue(q,x)) = enqueue ((dequeue q), x) |
fun dequeue (empty) = raise Qerror;
•  Using 2 ‘a-lists (one for adding and one for

removing and then have to switch when run out of
removing list)

datatype ‘a queue = Queue of (‘a list * ‘a list)
normal form for this representation is maintained by function norm

which has to be called after every removal of an element.
fun norm (Queue ([],tail) = Queue ((reverse tail),[]) | norm q = q;

OOPLsFoundations, CS5314 Sp2016, B.G.Ryder 8

CLU Specification

•  Requires = constraints on the use of an
operation, if any

•  Modifies = side effects on inputs
•  Effects = defines operation behavior on

allowed inputs
•  Claim: Although imprecise because uses

natural language, much better than having
no comments to specify function behavior

5

OOPLsFoundations, CS5314 Sp2016, B.G.Ryder 9

Operations Specification
enqueue = proc (q:queue, x: int) returns (queue)
 modifies: q
 effects: Adds x to q

dequeue = proc (q:queue) returns (queue)
 modifies: q
 requires: q be nonempty
 effects: Returns q with one less element.

qhd = proc (q:queue) returns (int)
 effects: Returns element at head of q
 requires: q be nonempty.

Qnull = proc (q:queue) returns (bool)
 effects: Returns true if q is empty, else false.

OOPLsFoundations, CS5314 Sp2016, B.G.Ryder 10

Mutability
•  Mutable data abstractions have values

which can change during execution.
–  Used to model real-world entities
–  Tricky to manage for shared objects
–  Destructive operations are performed; more

space efficient
•  Mutability is property of the abstract data

type, NOT the implementation
–  Mutable types need mutable rep types
–  Immutable types can use mutable or immutable

rep types

6

OOPLsFoundations, CS5314 Sp2016, B.G.Ryder
11

Mutability

•  Immutable data abstractions are assign-once
variables
–  E.g., integers, points in a plane
–  Safer for shared objects
–  Operations on this type return new object of the

type with altered values.
–  Creates need for garbage collection

OOPLsFoundations, CS5314 Sp2016, B.G.Ryder 12

Classes of Operations

•  Constructors
–  Create objects of a datatype

•  Mutators
–  Modify objects of a datatype - enqueue,

dequeue
•  Observers

–  Given object of a datatype, return values
related to that object - qnull, qhd

7

OOPLsFoundations, CS5314 Sp2016, B.G.Ryder 13

Equality Checking

•  Need to provide in the interface
•  Can use a canonical representation

–  E.g., rationals, R = Rat of int * int;
fun make (a,b:int) = Rat (a,b). Then val x=make(1,2);

val y=make(5,10); x=y isn’t true!
However, the following works:
make2(a,b)=(Rat(a div gcd(a,b), b div gcd(a,b)));

•  Can also create own equality function within the
abstraction
Eg., fun equalrat(Rat(a,b),Rat(c,d)) = (a*d = c*b)

1 2
x

5 10

y

OOPLsFoundations, CS5314 Sp2016, B.G.Ryder 14

Abstract Datatype

•  Can refer to an abstract datatype and its
rep type separately

•  Can refer to the mappings between these 2
worlds
–  Abstraction Function: maps a rep object to its

corresponding abstract datatype object; defines
meaning of the representation

–  Representation Invariant: statement of a
property that all legitimate reps of abstract
objects satisfy

8

OOPLsFoundations, CS5314 Sp2016, B.G.Ryder 15

Abstraction Function
•  More than 1 rep value may represent same

abstract value
–  Integer sets represented in arrays
 [1,2] and [2,1] both are array reps of {1,2}

{1,2}
Integer sets {7}

[1,2] [2,1] [7]
Rep type is int arrays

OOPLsFoundations, CS5314 Sp2016, B.G.Ryder 16

Representation Invariant
•  Think about (x,y) coordinates represented by

polar coordinates (length,angle).
g(r) = (r.ln *cos(r.ang), r.ln * sin(r.ang))
Then Invar(r)= (r.ln>0 and 0<= r.ang <=2π) or
 (r.ln = 0 and r.ang = 0)

•  For int sets represented as an int array R,
Invar(R) = for all k,j,low (R) <= k < j <= high(R)
and R[k] != R[j] (since sets have no multiple

elements)

9

OOPLsFoundations, CS5314 Sp2016, B.G.Ryder 17

CLU Generic Functions
Search function on character data:
search = proc (v:char, b: array of char) returns (x:bool)

 requires: b sorted in non-decreasing order
 effects: true returned iff b[j]=v for some j

Generic search function:
search = proc [t:type](v:t, a: array[t]) returns (bool)

 requires: t has operations equal, lt: proctype (t,t)
returns (bool) such that t is totally ordered by lt, and
a is sorted in ascending order based on lt
 effects: if v is in a, returns j such that a[j]=v;
otherwise, returns high(a)+1 (i.e.,upper bnd on a +1)

OOPLsFoundations, CS5314 Sp2016, B.G.Ryder 18

Iterators

•  If abstract datatype is a collection of
objects, you may want to examine each
object in the collection

•  How to accomplish this?
–  Write a function in the interface that extracts

the objects, 1 by 1, performs some calculation
on them and then recreates the collection

–  Copy the objects in the collection to an
immutable type object. Return that object to
the user to use

10

OOPLsFoundations, ΧΣ5314 Σπ2016, Β.Γ.Ρψδερ 19

Iterators

•  Provide a special function for the abstract
datatype: an iterator
elements = iter (s:intset) yields (int)
requires: s not be modified by calling loop body

(or consequences can’t be determined)
effects: yields elements of s one by one in

arbitrary order
•  Iterators can be nested

–  They operate as though each has its own copy
of the collection.

OOPLsFoundations, CS5314 Sp2016, B.G.Ryder 20

Enumerations in Java

•  Java - Enumeration object keeps copy of
collection or a copy of a reference to it
–  Affects whether or not changing the collection

while iterating disturbs the enumeration
–  Use polymorphic container class and then

downcast to proper object type
•  e.g., SetEnumeration returns Object type; needs to

be cast to actual type at each use

–  Enumeration is a Java interface with standard
functions that classes which implement it must
provide

11

OOPLsFoundations, CS5314 Sp2016, B.G.Ryder 21

C++ Iterator Example
class stack { private: elt *s; int top; friend class stack_iter;

 const int EMPTY = -1;
 public: stack(){s = new elt[100]; top = -1;} …}

class stack_iter{//will enumerate stack from bottom to top of
stack
 private: elt *st; int n; int t;
 //invariant: elements in st[0..n] have already been returned

 stack_iter(stack &goOver){ // creates copy of stack

 t = goOver.top;
 st = new elt[t+1];
 for (int j=0; j<=t; ++j)
 st[j]=goOver.s[j];
 n = goOver.EMPTY;} //initializes subscript pointing into
copy
 boolean getNext(elt &val){
 if (n < t) {val = st[++n]; return 1;} else return 0;

 } }

OOPLsFoundations, CS5314 Sp2016, B.G.Ryder

22

Where to put iterators in C++

•  Can’t define iterator as subclass of the
collection class
–  Because then each iterator could only work with

respect to one collection object
•  Can’t define iterator as member of the

collection class
–  Because member functions have no way to

preserve state between calls (class vars are not
enough since they are shared by all objects)

12

OOPLsFoundations, CS5314 Sp2016, B.G.Ryder 23

Iterators in C++

•  There is NO natural subtyping relation
between iterators and the collections they
iterate over!

•  Solution - break encapsulation to create an
iterator
–  Use friend methods which lets iterator see

into the private collection instance variables

