Prolog

* Logic programming (declarative)
- Goals and subgoals

* Prolog Syntax

+ Database example

- rule order, subgoal order, argument
invertibility, backtracking model of execution,
negation by failure, variables

 Data structures (lists, trees)
- Recursive Functions: append, member

- Lazy evaluation, terms as trees, Prolog
search trees

+ Goal-oriented semantics

Prolog-1, CS5314 © BG Ryder 1

Intro to Logic Programming

- Specifies relations between objects
larger (2,1), father (tom, jane)

- Separates control in PL from description
of desired outcome

father(X, jane) :- male(X), parent(X, jane).
- Computation engine: theorem proving and
recursion
- Higher-level PL than imperative languages
- More accessible to non-technical people

Prolog-1, CS5314 © BG Ryder 2

Horn Clauses

« Conjunct of O or more conditions which
are atomic formulae in predicate logic
(constants, predicates, functions)
hy A h, A A h,— ¢

* Means c if hy, h,,.., h, are all true

* Can have variables in the h;‘s or ¢
c(Xy, %Xz, . X)if WXy, Xo, ., X0, Y1, Y1)
means for all objects x;, x,, .. , x,,, ¢ holds

if there are objects y, ,..,y,such that h
holds.

father(X, jane) :- male(X), parents(X, Y, jane)

Prolog-1, C55314 © BG Ryder 3

Logic Programming

- Goal-oriented semantics

- goal is true for those values of
variables which make each of the
subgoals true

+ father(X, jane) will be true if male(X) and
parents(X,Y, jane) are true with specific values for
X and Y

- recursively apply this reasoning until
reach rules that are facts.

- called backwards chaining

Prolog-1, C55314 © BG Ryder 4

Logic Programming

* Nondeterminism
- Choice of rule to expand subgoal by
- Choice of subgoal to explore first

father(X, jane):- male(X), parents(X, ¥, jane).
father (X, jane):- father (X,Y), brother(Y, jane).

which rule to use first? which subgoal to
explore first?

- Prolog tries rules in sequential order and
proves subgoals from left to right. -
Deterministic!

father(X, jane) :- male(X), parent(X, jane).

Prolog-1, C55314 © BG Ryder 5

Victoria Database Program

malé(albert). predicate victoria.pl

male (edward) . f"‘:j"‘MC'I‘;F';\S'"

female(alice). constants and Meflis

female(victoria).

parents (edward,victoria,albert).

parents(alice,victoria,albert).

?- male(albert).

yes

?- male(alice). By responding

false . <cr> you quit the query

?-female(X). variable : <cr> you continue to

X = alice : find another variable

X = victoria. binding that makes the
query true, if possible.

Prolog-1, CS5314 © BG Ryder

Victoria Example

* Problem: facts alone do not make interesting
programs possible. Need variables and deductive

rules.
?-female(X). a query or proposed fact
X = alice ; . asks for more answers

X = victoria. if user types <cr> then no
more answers given when no more
satisfying answers are left.

Variable X has been unified to all possible values
that make female (X) true.

- Performed by pattern match search

Prolog-1, CS5314 © BG Ryder

Prolog Syntax in EBNF
15 jane

<term> — <integer> | <atom> | <variable> |
<functor> (<term> {, <term>})
head :- body
<rule> — <predicate> (<term> {, <term>}):-
<term> {, <term>} . | <fact>

<fact> — <functor> (<term>) {, <term>}).

<query> — ?- <functor>(<term>{, <term>}).

a proposed fact that must be proven

Prolog-1, CS5314 © BG Ryder

Prolog Syntax, cont.

* Prolog program consists of facts, rules, and queries
* A query is a proposed fact, needing to be proven

- If query has no variables and is provable, answer is

yes

- If query has variables, the proof process causes
some variables to be bound to values which are
reported (called a substitution)

* Variable names are capitalized, predicate names and
constants are lower case.

* Names (e.g., predicates, functors with terms, clauses)

come from first order logic.

Prolog-1, CS5314 © BG Ryder

Victoria Example, cont.

sister_of(X,Y) :- female(X),parents(X,M,F),
parents(Y,M,F).

?- sister_of(alice, Y).

Y = edward

?- sister of(X,Y)-
_ . 3. female(alice).

X = alice 4. female(victoria).

Y = edward . 5. parents(edward,victoria,albert).
_ _ 6. parents(alice,victoria,albert).

X =Y Y = alice ;

fal first answer from 3.+6.+5.

alse second answer from 3.+6.+6.

Subgoal order, argument invertibility, backtracking,
rule order

Prolog-1, C55314 © BG Ryder 10

Victoria Example, cont.

sis(X,Y) :- female(X), parents(X,M,F),
parents(Y,M,F), \+(X==Y).

?7- sis(X,Y). = means unifies with
X = alice == means same in value

Y = edward .
false

\+ (P) succeeds when P fails;
called negation by failure

Prolog-1, CS5314 © BG Ryder 11

Negation by Failure

not(X) :- X, |, fail.
not(_) .

if X succeeds in first rule, then the goal
fails because of the last term.

if we type “.” the cut (!) will prevent us
from backtracking over it or trying the
second rule so there is no way to undue
the fail.

if X fails in the first rule, then the goal
fails because subgoal X fails. the system
tries the second rule which succeeds,
since “_" (don't care variable) unifies with
anything.

Prolog-1, C55314 © BG Ryder

Lists

list head tail 4
[a,b,c] a [b.c] b

-

[]

[a, [b, c], d] a [[b.c]. d]
X | Y] X Y ?
a list consists of a b/

¢ 1
sequence of terms 2 []

Prolog-1, C55314 © BG Ryder 13

Unifying Lists

[X.Y.Z] = [john, likes, fish]
X = john, Y = likes, Z = fish
[cat] = [X | Y]
X=cat,Y=[]

[1] 2] versus [1, 2]

A N

1 2 2 []

Prolog-1, 55314 © BG Ryder 14

Lists

- Sequence of elements separated by commas,
or

- [first element | rest_of_list]
- Like Scheme notation [car(list) | cdr(list)]

- [[the | Y| Z])=1[1[X, hare] | [is, here]]

e (V)

Prolog-1, CS5314 © BG Ryder

Lists

[X, abc, Y] =? [X, abc | Y]
thre is no value binding for ¥, to make
these two trees isomorphic.

e/ "O\

abc Y
Y []

Be careful of unifications that mix list syntax modes.

Prolog-1, C55314 © BG Ryder 16

Lists

[ab | Z]=2[X | V]
X=z=a Y=[b|Z] Z=

don’ T care variable
unifies with anything

look at the trees to see why this works!

[a b, cl=[X]VY]
X=a ¥Y=[bc]

Prolog-1, CS5314 © BG Ryder

Member_of Function

member(A, [A | B]).

member(A, [B | €C]) :- member (A, C).

goal-oriented semantics: can get value
assignment for goal member(A,[B|C]) by
showing truth of subgoal member(A,C)
and retaining value bindings of the

variables

Prolog-1, CS5314 © BG Ryder

?- member(a,[a,b]). Prolog arguments

yes

Example

Invertibility of

?- member(a,[b,c]).

false

?- member (X,[a,b,c]).

X = a
X =b»b;
X =c ;
false

’

1. member(A, [A | B]).
2. member(A, [B | €C]) :- member (A, C).

Try this last query with trace.

Prolog-1, CS5314 © BG Ryder

Example

?- member (a, [b, ¢, X]).

X=a ;
false
?- member (X,Y).

X =_123
Y=[X

X = _123

Y =712

X =_123

Y= |

Prolog-1, CS5314 © BG Ryder

1. member(A, [A | B]).
2. member(A, [B | €]) :- member (A, C).

| _124]) ;

5, x| _126] ;

127, _128, X [|_129]

Lazy evaluation of a priori unbounded list
structure. Unbound X variable is first

element, then second element, then third
element, in a sequence of generated lists
of increasing length.

20

10

Prolog Search Tree
member(X,[a,b,c])
X=A=a, B=[b,c)7/ \ X=A,B=a,C=[b.c]
=a member(X,[b,c])
success \ X=A’ B’ =b,C’ =[c]

X=A=b, B’ =[c]
member(X,[c])
Xsb XeA’ze,BL[] \X=A7

success =c, C"=[]
X=c member(A” [])

success

1. member(A, [A | B]).
2. member(A, [B | C]) :- member (A, C). fail fail

Prolog-1, 55314 © BG Ryder 21

1. member(A, [A | B]).

2. member(A, [B | €]) :- member (A, C).

?- member(X, [a,b,c]).
match rule 1. member(A, [A | B])so X = A =a, B =[b,c]

X=a .
match rule 2. member(A, [B| C])so X = A, B=a, C = [b,c]
then evaluate subgoal member(X, [b,c])

match rule 1. member(A’ ,[A’ | B']) so X = b, B‘= [c]

X=b ;
match rule 2. member(A’,[B’ | C'])so X = A, B'= b, C = [c]
then evaluate subgoal member(X, [c])
match rule 1. member(A”,[A” | B”]) so X=A"= ¢, B"=[]
X=c :
match rule 2. member(A”,[B” | C"]) so X=A", B"=¢,C"=[],
but member(X, []) is unsatisfiable, no

Prolog-1, C55314 © BG Ryder 22

11

Another Search Tree

member(a, [b,c,X])
/ \ B=b,C=[cX]
fail, a can’ t member(a,[c, X])
unify with b , ,
/ \ B =c,C =[X]
fail, a can’ t member(a,[X]).
unify with ¢ /
X ”’ C”: []
el ber(a, 1
member(a
1. member(A,[A | B]). success ’
2. member(A,[B | C]) :- member (A,C).
fail, can’ t unify fail, ditto
Prolog-1, CS5314 © BG Ryder [] with a list

23

Prolog Search Trees

*+ A formalism to consider all possible
computation paths

Leaves are success nodes or failures where
computation cannot proceed

* To model Prolog, leftmost subgoal is tried first

* Label edges with variable bindings that occur by
unification

- There can be infinite branches in the
tree, representing non-terminating
computations (performed lazily (i.e.,
generate as needed) by Prolog):

Prolog-1, CS5314 © BG Ryder 24

Another Member_ of Function

Equivalent set of rules:

mem(A,[A]|]).
mem(A,[_| C]) :- mem(A,C).

Can examine search tree and see the
variables which have been excised were
auxiliary variables in the clauses.

Prolog-1, C55314 © BG Ryder 25

Append Function

append ([1,A,A).
append ([A|B],C,[A|D]):- append(B,C,D).
* Build a list
?- append([a],[b],Y).
Y=[ab]
* Break a list into constituent parts
?- append(X,[b],[a,b]).
X=[a]
?- append([a],Y¥,[a,b]).
Yy=[b]

Prolog-1, C55314 © BG Ryder 26

13

More Append

?- append(X, ¥, [a,b]).
X=[1]

Y=[a b]

X = [a]

y = [b]

X = [a,b]

Y=1[1]

false

append ([1.A,A).
append([A|B],C,[A|D]):- append(B,C,D).

Prolog-1, C55314 © BG Ryder 27

Still More Append

* Generating an unbounded number of lists
?- append (X, [b], Y).
X=[]
y = [b]
X =[_169]
Y= [_169, b]
X=[_169, _170]
y=[_169, _170, b] :
efc.

append ([1.A,A).
append([A|B],C,[A|D]):- append(B,C,D).

Prolog-1, C55314 © BG Ryder 28

Common Beginner’s Errors

 Compile-time
- Forget ending
- Misspelled functors
- Need to override precedences with (..)

* Runtime
- Infinite loops - check your recursion
- Variables instantiated with unexpected values
- Circular definitions

- Giving wrong numbers of arguments to a
clause

“ »

Prolog-1, CS5314 © BG Ryder 29

15

