
1

Prolog-1, CS5314 © BG Ryder 1

Prolog
•  Logic programming (declarative)

–  Goals and subgoals
•  Prolog Syntax
•  Database example

–  rule order, subgoal order, argument
invertibility, backtracking model of execution,
negation by failure, variables

•  Data structures (lists, trees)
–  Recursive Functions: append, member
–  Lazy evaluation, terms as trees, Prolog

search trees
•  Goal-oriented semantics

Prolog-1, CS5314 © BG Ryder 2

Intro to Logic Programming
•  Specifies relations between objects

larger (2,1), father (tom, jane)
•  Separates control in PL from description

of desired outcome
 father(X, jane) :- male(X), parent(X, jane).

•  Computation engine: theorem proving and
recursion
–  Higher-level PL than imperative languages
–  More accessible to non-technical people

2

Prolog-1, CS5314 © BG Ryder 3

Horn Clauses
•  Conjunct of 0 or more conditions which

are atomic formulae in predicate logic
(constants, predicates, functions)
h1 ∧ h2 ∧ … ∧ hn → c

•  Means c if h1 , h2 ,…, hn are all true
•  Can have variables in the hi‘s or c

c(x1 ,x2 , … ,xm) if h(x1 , x2 , …,xm ,y1 ,…,yk)
means for all objects x1 , x2 , … , xm , c holds

if there are objects y1 ,…,yk such that h
holds.

 father(X, jane) :- male(X), parents(X, Y, jane)

Prolog-1, CS5314 © BG Ryder 4

Logic Programming

•  Goal-oriented semantics
–  goal is true for those values of
variables which make each of the
subgoals true

•  father(X, jane) will be true if male(X) and
parents(X,Y,jane) are true with specific values for
X and Y

–  recursively apply this reasoning until
reach rules that are facts.

–  called backwards chaining

3

Prolog-1, CS5314 © BG Ryder 5

Logic Programming
•  Nondeterminism

–  Choice of rule to expand subgoal by
–  Choice of subgoal to explore first

father(X,jane):- male(X), parents(X, Y, jane).
father (X,jane):- father (X,Y), brother(Y, jane).

which rule to use first? which subgoal to

explore first?
–  Prolog tries rules in sequential order and

proves subgoals from left to right. -
Deterministic!

Prolog-1, CS5314 © BG Ryder 6

Victoria Database Program
male(albert).
male(edward).
female(alice).
female(victoria).
parents(edward,victoria,albert).
parents(alice,victoria,albert).
?- male(albert).
yes
?- male(alice).
false
?-female(X).
X = alice ;
X = victoria.

victoria.pl
from Clocksin
and Mellish

By responding
<cr> you quit the query
; <cr> you continue to
 find another variable
 binding that makes the
 query true, if possible.

predicate

constants

variable

4

Prolog-1, CS5314 © BG Ryder 7

Victoria Example

•  Problem: facts alone do not make interesting
programs possible. Need variables and deductive
rules.

?-female(X). a query or proposed fact
X = alice ; ; asks for more answers
X = victoria. if user types <cr> then no

 more answers given when no more
 satisfying answers are left.

Variable X has been unified to all possible values
that make female(X) true.
–  Performed by pattern match search

Prolog-1, CS5314 © BG Ryder 8

Prolog Syntax in EBNF

<term> → <integer> | <atom> | <variable> |
 <functor> (<term> {, <term>})

<rule> → <predicate> (<term> {,<term>}):-

 <term> {, <term>} . | <fact>

<fact> → <functor> (<term>) {, <term>}).

<query> → ?- <functor>(<term>{,<term>}).

head :- body

15 jane X

a proposed fact that must be proven

5

Prolog-1, CS5314 © BG Ryder 9

Prolog Syntax, cont.

•  Prolog program consists of facts, rules, and queries
•  A query is a proposed fact, needing to be proven

–  If query has no variables and is provable, answer is
yes

–  If query has variables, the proof process causes
some variables to be bound to values which are
reported (called a substitution)

•  Variable names are capitalized, predicate names and
constants are lower case.

•  Names (e.g., predicates, functors with terms, clauses)
come from first order logic.

Prolog-1, CS5314 © BG Ryder 10

Victoria Example, cont.

sister_of(X,Y) :- female(X),parents(X,M,F),
parents(Y,M,F).

?- sister_of(alice, Y).
Y = edward
?- sister_of(X,Y).
X = alice
Y = edward ;
X =Y, Y = alice ;
false

3. female(alice).
4. female(victoria).
5. parents(edward,victoria,albert).
6. parents(alice,victoria,albert).
first answer from 3.+6.+5.
second answer from 3.+6.+6.

Subgoal order, argument invertibility, backtracking,
rule order

6

Prolog-1, CS5314 © BG Ryder 11

Victoria Example, cont.

sis(X,Y) :- female(X), parents(X,M,F),
parents(Y,M,F),\+(X==Y).

?- sis(X,Y).
X = alice
Y = edward ;
false

\+ (P) succeeds when P fails;
called negation by failure

= means unifies with
== means same in value

Prolog-1, CS5314 © BG Ryder 12

Negation by Failure
not(X) :- X, !, fail.
not(_) .
if X succeeds in first rule, then the goal

fails because of the last term.
if we type “;” the cut (!) will prevent us

from backtracking over it or trying the
second rule so there is no way to undue
the fail.

if X fails in the first rule, then the goal
fails because subgoal X fails. the system
tries the second rule which succeeds,
since “_” (don’t care variable) unifies with
anything.

7

Prolog-1, CS5314 © BG Ryder 13

Lists

list head tail
[a,b,c] a [b,c]

[a, [b, c], d] a [[b,c], d]

[X | Y] X Y
a list consists of a
sequence of terms

a

b
c

[]

a
b
c

[]
d

[]

Prolog-1, CS5314 © BG Ryder 14

Unifying Lists

[X,Y,Z] = [john, likes, fish]
 X = john, Y = likes, Z = fish

[cat] = [X | Y]
 X = cat, Y = []

[1 | 2] versus [1, 2]

1 2
1

2 []

8

Prolog-1, CS5314 © BG Ryder 15

Lists

•  Sequence of elements separated by commas,
or

•  [first element | rest_of_list]
•  Like Scheme notation [car(list) | cdr(list)]

•  [[the | Y] | Z] = [[X, hare] | [is, here]]

the Y
Z

X
hare []

is
here []

Prolog-1, CS5314 © BG Ryder 16

Lists

[X, abc, Y] =? [X, abc | Y]
thre is no value binding for Y, to make

these two trees isomorphic.

X
abc

Y []

X
abc Y

Be careful of unifications that mix list syntax modes.

9

Prolog-1, CS5314 © BG Ryder 17

Lists

[a,b | Z] =? [X | Y]
 X = a, Y = [b | Z], Z = _

look at the trees to see why this works!
[a, b, c] = [X | Y]
 X = a, Y = [b,c].

don’t care variable
unifies with anything

Prolog-1, CS5314 © BG Ryder 18

Member_of Function
member(A, [A | B]).
member(A, [B | C]) :- member (A, C).

goal-oriented semantics: can get value

assignment for goal member(A,[B|C]) by
showing truth of subgoal member(A,C)
and retaining value bindings of the
variables

10

Prolog-1, CS5314 © BG Ryder 19

Example

?- member(a,[a,b]).
yes

?- member(a,[b,c]).
false

?- member(X,[a,b,c]).
X = a ;
X = b ;
X = c ;
false

Invertibility of
Prolog arguments

1. member(A, [A | B]).
2. member(A, [B | C]) :- member (A, C).

Try this last query with trace.

Prolog-1, CS5314 © BG Ryder 20

Example

?- member(a,[b, c, X]).
X= a ;
false

?- member(X,Y).
X = _123
Y = [X | _124]) ;
X = _123
Y = [_125, X | _126] ;
X = _123
Y = [_127, _128, X |_129]

Lazy evaluation of a priori unbounded list
structure. Unbound X variable is first
element, then second element, then third
element, in a sequence of generated lists
of increasing length.

1. member(A, [A | B]).
2. member(A, [B | C]) :- member (A, C).

11

Prolog-1, CS5314 © BG Ryder 21

Prolog Search Tree
member(X,[a,b,c])

member(X,[b,c])

X=A,B=a,C=[b,c]

member(X,[c])

X=A’,B’=b,C’=[c]

fail fail

member(A”,[])

X=A”
B”=c, C”=[]

1. member(A, [A | B]).
2. member(A, [B | C]) :- member (A, C).

X=a
success

X=A=a, B=[b,c]``

X=b
success

X=A=b, B’=[c]

X=c
success

X=A”=c, B”=[]

Prolog-1, CS5314 © BG Ryder 22

?- member(X, [a,b,c]).
match rule 1. member(A, [A | B]) so X = A = a, B = [b,c]

 X = a ;
match rule 2. member(A, [B | C]) so X = A, B = a, C = [b,c]
then evaluate subgoal member(X, [b,c])

 match rule 1. member(A’,[A’ | B’]) so X = b, B‘= [c]
 X = b ;

 match rule 2. member(A’,[B’ | C’]) so X = A’, B‘= b, C’= [c]
 then evaluate subgoal member(X, [c])
 match rule 1. member(A”,[A” | B”]) so X=A”= c, B”=[]
 X = c ;
 match rule 2. member(A”,[B” | C”]) so X=A”, B”=c,C”=[],

 but member(X, []) is unsatisfiable, no

1. member(A, [A | B]).
2. member(A, [B | C]) :- member (A, C).

12

Prolog-1, CS5314 © BG Ryder
23

Another Search Tree
member(a, [b,c,X])

fail, a can’t
unify with b

member(a,[c, X])

B = b, C = [c,X]

fail, a can’t
unify with c

B’=c, C’=[X]

member(a,[X]).

X=a, B”= []
success member(a,[])

X=B”, C”= []

fail, dittofail, can’t unify
[] with a list

1. member(A,[A | B]).
2. member(A,[B | C]) :- member (A,C).

Prolog-1, CS5314 © BG Ryder 24

Prolog Search Trees
•  A formalism to consider all possible

computation paths
•  Leaves are success nodes or failures where

computation cannot proceed
•  To model Prolog, leftmost subgoal is tried first
•  Label edges with variable bindings that occur by

unification

–  There can be infinite branches in the
tree, representing non-terminating
computations (performed lazily (i.e.,
generate as needed) by Prolog);

13

Prolog-1, CS5314 © BG Ryder 25

Another Member_of Function

Equivalent set of rules:

mem(A,[A|_]).
mem(A,[_| C]) :- mem(A,C).

Can examine search tree and see the

variables which have been excised were
auxiliary variables in the clauses.

Prolog-1, CS5314 © BG Ryder 26

Append Function
append ([],A,A).
append([A|B],C,[A|D]):- append(B,C,D).
•  Build a list

?- append([a],[b],Y).
Y = [a,b]

•  Break a list into constituent parts
?- append(X,[b],[a,b]).
X = [a]
?- append([a],Y,[a,b]).
Y = [b]

14

Prolog-1, CS5314 © BG Ryder 27

More Append

?- append(X, Y, [a,b]).
 X = []
 Y = [a, b] ;
 X = [a]
 Y = [b] ;
 X = [a,b]
 Y = [] ;
 false

append ([],A,A).
append([A|B],C,[A|D]):- append(B,C,D).

Prolog-1, CS5314 © BG Ryder 28

Still More Append

•  Generating an unbounded number of lists
?- append(X, [b], Y).
X = []
Y = [b] ;
X = [_169]
Y = [_169, b] ;
X = [_169, _170]
Y = [_169, _170, b] ;
etc.

append ([],A,A).
append([A|B],C,[A|D]):- append(B,C,D).

15

Prolog-1, CS5314 © BG Ryder 29

Common Beginner’s Errors

•  Compile-time
–  Forget ending “.”
–  Misspelled functors
–  Need to override precedences with (..)

•  Runtime
–  Infinite loops - check your recursion
–  Variables instantiated with unexpected values
–  Circular definitions
–  Giving wrong numbers of arguments to a

clause

