
2/7/16

1

Prolog-2, CS5314 © BGRyder 1

Prolog-2nd Lecture

•  Tracing in Prolog
–  Procedural interpretation of execution
–  Box model of Prolog predicate rule
–  How to follow a Prolog trace?

•  Trees in Prolog – use nested terms
•  Unification

–  Informally
–  Formal description
–  Problems in compilation

•  Cut (!) subgoal and how it changes control
flow

•  An Anomaly: Occurs check

Prolog-2, CS5314 © BGRyder 2

Prolog Predicate - Box Model

call exit

redo fail

success 1.Member(A, [A|B]).

2.Member(A,[B|C]):-
 Member(A,C)

This box represents 1 invocation w recursive rules;
use one box per recursive subgoal called.

2/7/16

2

Example SWI-Prolog Trace

\> more memberAppend.pl
member(A,[A|B]).
member(A,[B|C]) :- member(A,C).
append([],A,A).
append([A|B],C,[A|D]) :- append(B,C,D).
\> swipl
?- consult("memberAppend.pl").
?- trace.
true.
?- [trace] ?- member(a,[a,b,c]).
 Call: (7) member(a, [a, b, c]) ? creep
 Exit: (7) member(a, [a, b, c]) ? creep //R1
true.

Prolog-2, CS5314 © BGRyder 3

[trace] ?- member(a,[b,c,X]).
 Call: (7) member(a, [b, c, _G1789]) ? creep //try R1
 Call: (8) member(a, [c, _G1789]) ? creep //try R2
 Call: (9) member(a, [_G1789]) ? creep //try R2
 Exit: (9) member(a, [a]) ? creep //R1
 Exit: (8) member(a, [c, a]) ? creep
 Exit: (7) member(a, [b, c, a]) ? creep
X = a ; //find another answer
 Redo: (9) member(a, [_G1789]) ? creep // try R2
 Call: (10) member(a, []) ? creep //R2
 Fail: (10) member(a, []) ? creep
 Fail: (9) member(a, [_G1789]) ? creep
 Fail: (8) member(a, [c, _G1789]) ? creep
 Fail: (7) member(a, [b, c, _G1789]) ? creep
false.

[trace] ?-

Prolog-2, CS5314 © BGRyder 4

2/7/16

3

Prolog-2, CS5314 © BGRyder 5

Trees in Prolog

•  Can use Prolog terms to represent trees
2 * 3 can be times(2,3)

–  Then can design recursive Prolog clauses to
“walk” the tree, gathering terms.

–  Example, generating code from an abstract
syntax tree for an arithmetic expression

times

2 3

Prolog-2, CS5314 © BGRyder 6

Example
treewalk(W,[W]) :- integer(W).
treewalk(times(X,Y),Walk) :- treewalk(X,W1),

treewalk(Y,W2),append(W1,[*],A1),
 append(A1,W2,Walk).
Treewalk(add(X,Y), Walk):- treewalk(X,W1),

treewalk(Y,W2), append(W1,[+],A1),
append(A1,W2,Walk).

append([],A,A).
append([A|B],C,[A|D]) :- append(B,C,D).

times

X Y

add

X Y

2/7/16

4

Prolog-2, CS5314 © BGRyder 7

Generating Code from AST

times

add

2 3

4

A Prolog data structure:
add(times(2,3),4))
representation for
2*3+4

This Prolog query produces code
from the tree represented as a
Prolog data structure (a term):
?-treewalk(add(times(2,3),4),X)).
X = [2, *, 3, + , 4]

Note code generated here is a
correct in-order traversal but
will not generate correct expressions
from the input because it ignores
operator precedence. You can also
think of this as showing how to
traverse the parse tree in DF
order.

Prolog-2, CS5314 © BGRyder 8

How treewalk.pl works?

•  Second argument is always the code which
corresponds to the AST which is the first
argument.

•  Base case finds leaf nodes which are
integer constants with Prolog built-in

treewalk(W,[W]) :- integer(W).
•  Tree exploration generates an in-order

traversal of the nodes
•  and times clauses work the same

2/7/16

5

Prolog-2, CS5314 © BGRyder 9

How treewalk.pl works?

•  First, explore left subtree and get its code
bound to W1 (left operand)
treewalk(times(X,Y),Walk) :-
treewalk(X,W1), …

•  Second, explore right subtree and get its
code bound to W2 (right operand)
… treewalk(Y,W2),…

•  Third, insert proper operator for this node
… append(W1,[*], A1), …

•  Fourth, append rest of expression
 … append(A1,W2,Walk).

Prolog-2, CS5314 © BGRyder 10

Unification Examples
unify(X,Y):- X = Y.
| ?- unify(a,X).
X = a.
| ?- unify(a,X),unify(X,Y).
X = Y = a.
| ?- unify(a,X),unify(b,Y),unify(X,Y).
false
| ?- unify(X,Y).
X = Y.
| ?- unify(X,Y), unify(X,a).
X = Y, Y = a.
| ?- unify(X,dummy(a)).
X = dummy(a).
| ?- unify(X,dummy(Y)).
X = dummy(Y).

2/7/16

6

Prolog-2, CS5314 © BGRyder 11

Unification, Informally

•  Intuitively, unification between 2 Prolog
terms tries to associate values with the
variables so that the resulting trees, are
isomorphic, including matching labels

Prolog-2, CS5314 © BGRyder 12

Unification, Informally
•  Given a subgoal <functor>(<term>{,

<term>}) how to unify it with a clause
head?
–  Rule head and subgoal have same name
–  Any uninstantiated variable matches any term

•  If term is also an uninstantiated variable, this
means if either takes on a value, they both do

–  Integer and symbolic constants match themselves only!
–  A structured term matches another term iff

•  Has same relation name
•  Has same number of components (that is, terms

within parentheses) and corresponding components
match

–  Lists unify by matching element by element

2/7/16

7

Prolog-2, CS5314 © BGRyder 13

Unification
•  Unification looks for the most general (or

least restrictive) value to assign
•  A substitution (σ) is a finite map from

variables to terms in the language
append([A|B],Y,[A|Z]):-
?- append([a,b],[c],W)
σ: A → a, B → [b], Y → [c], W → [a | Z]

•  A term U is an instance of another term
T, if there is a substitution σ such that
U = T σ.

Rule head
query

Prolog-2, CS5314 © BGRyder 14

Unification
•  Two terms S,T unify if they have a common

instance U; that is,
 S σ1 = T σ2 = U

– Note: if variable X is contained in both
S and T, then σ1 and σ2 both must have
the same substitution for X.

– If two terms unify, they can be made
identical under some substitution

2/7/16

8

Prolog-2, CS5314 © BGRyder 15

Unification

•  There may be more than one substitution to
unify two terms
times(Z,times(Y,7)) and times(4,W)

σ1 : Z=4, Y=plus(3,5),W=times(plus(3,5),7)

σ2: Z=4, W=times(Y,7)

Which substitution is simpler or less restrictive on
the values of the variables? σ2

Prolog-2, CS5314 © BGRyder 16

Most General Unifier

•  We say γ is the most general unifier (mgu)
of two terms, T and W, iff for all other
unifiers σ of T and W, Tσ is an instance
of T γ ; therefore, σ can be obtained by a
substitution δ applied to γ, σ = γ • δ
?- member(A,B) returns A=_123, B=[A| _] when

it could return A= _123, B=[A, b] or A=_123,
B= [A, c, d] etc. Note, the 2nd and 3rd B
values are obtainable from the mgu by
additional substitutions

2/7/16

9

Prolog-2, CS5314 © BGRyder 17

Cut
•  Cut (!)

–  Commits system to all choices made since the
parent goal was invoked

–  If the parent predicate is re-entered by a
backtracking computation, it cannot be re-
satisfied. Instead a previous predicate must be re-
satisfied.

eat_lunch(joe,X):-available(X),cheap(X),!,
sick(joe, X).

 use eat_lunch predicate in another computation: …
eat_lunch(joe,Y),…

If backtrack into eat_lunch, can’t retry available(X) or
cheap(X), and can’t try another rule for eat_lunch(joe,Y).

Prolog-2, CS5314 © BGRyder 18

Occurs Check

•  There are problems with the unification
done in some Prolog compilers, which
result in an unbounded unification being
attempted. Called an occurs check
–  [a,b |Z] = [X | Z] X → a, Z → [b, Z]

a
b X ZZ

2/7/16

10

Prolog-2, CS5314 © BGRyder 19

Occurs Check
•  If try to evaluate value of Z, compiler will

return Z=[b,b,b,… a value that results in
an infinite loop in the Prolog interpreter

•  Unification should check that it doesn’t
unify a variable with a term containing that
same variable

•  Occurs check was left out of Prolog by
Colmerauer because of efficiency (to avoid
the run-time cost)
–  Current Prolog compilers have it
–  Example of safety yielding to efficiency (O(n) instead of

O(n2) on list concatenation)

Prolog-2, CS5314 © BGRyder 20

Occurs Check
Useful recursive type to build, a not-fully-

evaluated list
?-append([],E,[a,b|E])
need to unify with append([],A,A) resulting

in A → E and A → [a, b | E]

a
b E

desired result

a
b E

A,E
a

b

E

final type graph during unification
process

Can’t be built without occurs check

