
1

Prolog-3, CS5314 © BGRyder 1

Prolog-3rd Lecture
D.H.D. Warren, “Logic Programming and Compiler Writing”, Software

Practice and Experience, vol 10, pp 97-125, 1980.

•  Prototyping a Compiler
•  Prolog features used

–  Logic variables with late binding
–  Unification
–  AST’s built as Prolog terms

•  Build recursive descent parser with code
generation into a list

•  Example: translating arithmetic
expressions

Prolog-3, CS5314 © BGRyder 2

Prototype Compiler
•  Source: subset of Pascal/C
•  Target: von Neumann machine code
•  Claim:

–  Code is self-documenting (through choice of
variable names)

–  Facilitates experiments in language design
–  Compiler design is very modular, built with TD

design;
•  UNIX pipe-type communication between compiler phases;
•  Uses LL parsing

2

Prolog-3, CS5314 © BGRyder 3

Compiler

Parser: Prolog
list of
tokens

Parser AST as Prolog term

Code Generator:

AST as
Prolog term Code Generator

Instruction list
for Warren abstract
Machine + symbol
table

Assembler:

Instruction list
+ symbol table Assembler Code followed by

data storage

Prolog-3, CS5314 © BGRyder 4

Compilation

•  Lexical analysis: provided input program
splits input line into a flat Prolog list of
tokens

•  Parsing: create intermediate code (AST)
from token stream

•  Code generation: create basic structure of
object program with symbolic addresses;
build symbol table

3

Prolog-3, CS5314 © BGRyder 5

Compilation, cont.

•  Assembly: map data to storage; fix up
symbolic addresses to absolute addresses

•  Consider each portion of the TD compiler in
turn

•  Input to be a token stream in a Prolog list
•  Output to be a stream of instructions followed

by data storage

Prolog-3, CS5314 © BGRyder 6

Parsing - Intuition

•  Each nonterminal becomes a Prolog term
with three arguments:
<nonterm> (<start>, <end>, <tree>)
where
 <start> is a token stream in a Prolog list,
 <end> is remaining token stream after
 <nonterm> is recognized,

 <tree> is top level of the AST corresponding to
 <nonterm>

4

Prolog-3, CS5314 © BGRyder

7

Parser Example
e.g., <stmt> ::= if <test> then <stmt> else <stmt> becomes

stmt([if | Z0], Z, if(Test,Then,Else)):-

 test(Z0, [then | Z1], Test), stmt(Z1, [else | Z2], Then),
 stmt(Z2, Z, Else).

test(Z0, Z, test(Op, X1, X2)):- expr(Z0, [Op | Z1], X1),

 compareop(Op), expr (Z1, Z, X2).

expr(Z0, Z, X) :- subexpr(… etc.

Note, our Prolog [X| Y] is equivalent to Warren’s [X . Y]

test

Op X1 X2

<

Prolog-3, CS5314 © BGRyder 8

Example - If Stmt

if x>0 then y:= 2 else y := 3

 ^ call to <stmt> unifies with [if |Z0] as start
 ^ call to <test>

 first call to <expr> to find x
 second call to <expr> to find 0
 returns test(> , x, 0) in <test> rule which matches “then”

 ^ call to stmt(Z1, [else | Z2], Then) finds first
 assignment, y:=2
 ^call to stmt(Z2, Z, Else) finds second
 assignment, y:=3

(^ shows approximate location in input stream)

Z2,
Z1,
Z0

Warren, p 120

5

Prolog-3, CS5314 © BGRyder 9

Example - If Stmt AST

if

test

< x 0

then

assign

y

const

2

else

assign

namename const

y 3

if(test(<,X,0), then(assign(name(y),const(2))),
 else(assign(name(y),const(3))))

Prolog-3, CS5314 © BGRyder 10

Code Generation

•  To produce basic structure of object
program with machine addresses in symbolic
form

•  Done through a tree walk
encodestmt(<1>, <2>, <3>)

<1> is input AST constructed by parser
<2> is dictionary, gives bindings for names, will
eventually hold offset addresses

<3> output object code

6

Prolog-3, CS5314 © BGRyder 11

Code Generation Example

encodestmt(assign(name(X),Expr), D,
 (Exprcode; instr(store,Addr))):-
 lookup(X, D, Addr),

 encodeexpr(Expr,D,Exprcode).

encodestmt(AST for assignment stmt, dictionary or

symbol table,
(Code for rhs of assignment; code for the store

instruct.)):-
Addr is address for X to be bound to actual storage,

happens later during assembly
encodeexpr generates code for Expr AST with symbol

table D

Warren, p 110

Prolog-3, CS5314 © BGRyder 12

Code Generation Example

•  Uses unification and delayed binding to
generate code with “holes” for data
addresses to be filled in later

•  Actually, ordering of subgoal evaluation here
is irrelevant

•  Note: in paper, code is generated in infix
format (a flat sequence) rather than the
Prolog prefix form we’re showing
[instruct1; instruct2; instruct3; …]

7

Prolog-3, CS5314 © BGRyder
13

Example

source: if <test> then <stmt> else <stmt>
object code: Testcode
 Thencode
 Jump <label2>
 <label1>: Elsecode

 <label2>:

has embedded jump to
<label1> on false value

in code L1, L2 are unbound vars,
whose values are set at assembly
time; automatic handling of
forward references!!

Warren, p 113

Prolog-3, CS5314 © BGRyder 14

Example

encodestmt(if(Test,Then,Else), D, (Testcode;
Thencode; instr(jump L2); label(L1); Elsecode;
label(L2))) :-
 encodetest(Test, D, L1, Testcode),
 encodestmt(Then, D, Thencode),
 encodestmt(Else, D, Elsecode).

encodetest(test(Op,Arg1,Arg2), D, Label,
(Exprcode ; instr(Jumpif,Label))) :-
 encodeexpr(expr(-, Arg1, Arg2), D, Exprcode),
unlessop(Op, Jumpif).

picks proper operator
for comparison op

placeholder for
forward jump

8

Prolog-3, CS5314 © BGRyder 15

Example

if

test

< x 0

then

assign

y

const

2

else

assign

namename const

y 3

Testcode

Thencode; Jump L2 Elsecode

L2:

L1:

Prolog-3, CS5314 © BGRyder 16

Warren Machine Code
for If Stmt example:
 Load &x %found by lookup
 Loadc 0
 JumpLE L1
 Loadc 2
 Store #y
 Jump L2

L1: Loadc 3
 Store #y

L2:

All variable locations resolved to
absolute locations at assembly time

9

Prolog-3, CS5314 © BGRyder 17

Instruction Set (Table 1,p107)

ADDC ADD JumpEQ Read
SUBC SUB JumpNE Write
MULC MUL JumpGT Halt
DIVC DIV JumpLT Block
LOADC LOAD JumpLE
 STORE JumpGE
 Jump

Prolog-3, CS5314 © BGRyder 18

Symbol Table

•  Symbol table is called a dictionary
•  Dictionary - an ordered tree of (name,value)

pairs
•  lookup(<1>,<2>,<3>): name <1> with value

<3> is in dictionary <2>
•  lookup is used to create dictionary, insert

values and then retrieve them
–  Code generator builds dictionary and uses it for

lookups;
–  Assembler associates addresses with names.

10

Prolog-3, CS5314 © BGRyder 19

Symbol Table Example

%find name, value at root
lookup(Name, dict(Name,Value, _ , _), Value):- !.
%look in left subtree
lookup(Name, dict(Name1, _ , Before, _), Value):-
 Name < Name1, lookup(Name,Before,Value).

%look in right subtree
lookup(Name, dict(Name1, _ , _ , After), Value):-
 Name > Name1, lookup(Name,After,Value).
 clause order

for efficiency
of evaluation

Prolog-3, CS5314 © BGRyder 20

Table Building

lookup(salt, D, X1),

lookup(mustard, D, X2),

lookup(vinegar, D, X3),

lookup(pepper, D, X4).

salt : X1

mustard: X2 vinegar :X3

salt :X1

mustard :x2 vinegar :X3

pepper :X4

At first, D
is empty.

salt : X1 salt :X1

mustard :X2

11

Prolog-3, CS5314 © BGRyder 21

Assembler

•  Names are resolved to absolute locations
•  Labels bound to code locations

compile(Source, (Code; instr(halt,0); block(L))):-
 encodestmt(Source, D, Code),%returns code and
dictionary

 assemble(Code, 1, N0), %computes addresses of labeled
instructions and returns N0, end address of code

 N1 is N0 +1,
 allocate(D, N1, N),%lays out data storage from location
N1 through N

 L is N - N1.%length of data storage block

Prolog-3, CS5314 © BGRyder 22

Assembler

%N0 is code start address; N is code end address
assemble([Code1 | Code2], N0, N):-
 assemble(Code1, N0, N1),
 assemble(Code2, N1, N).

%increment instruction counter
assemble(instr(_, _), N0, N) :- N is N0 +

1.
%unifies location number with label
assemble(label(N), N,N).

12

Prolog-3, CS5314 © BGRyder 23

Data Allocation

allocate(<1>, <2>, <3>) puts aside storage for
all names in dictionary <1> between locations
<2> and <3>.

allocate(void,N,N) :- !.%choosing smallest dictionary
allocate(dic(Name, N1, Before, After), N0, N):-
 allocate(Before, N0, N1), N2 is N1+1,
 allocate(After, N2, N).

