» allow it

function
nment g,
in inter-
ning lan-

3, which

s for the
“ribes an
initional
be inter-
172] pre-

higher-
ler func-
lered in

1as been
ve auto-

Static Types
and the Lambda Calculus

Church was struck by certain similarities between his new concept
and that used in Whitehead and Russell [1925] for the class of all x’s
such that f (x); to wit, xf (x). Because the new concept differed quite
appreciably from class membership, Church moved the caret down
from over the x to the line just to the left of x; specifically, Axf(x).
Later, for reasons of typography, an appendage was added to the
caret to produce a lambda; the result was Axf(x).

—Rosser [1984], from an after-dinner talk on the history of the lambda calculus in
which he presented “a still shorter and more perspicuous” proof of the Church-
Rosser theorem.

Static or compile-time type checking anticipates run-time behavior, so it is rea-
sonable to study types at the end of this book, after the dynamic semantics of
expressions is understood. Only then can we hope to make sense out of
claims like “’strong typing prevents run-time errors.” It is easier to study error
prevention if we know what an error is.

Claims about error prevention have to be worded carefully because static
types prevent only certain kinds of run-time errors. At compile time, we can
detect an attempt to add procedures instead of numbers or an attempt to use a
pointer instead of a record, but we cannot always detect an attempt to divide
by zero or an attempt to use an out-of-bounds array index.

The notion of the dynamic state of a computation, central to imperative
programming, has little to do with static types, which are a property of the
program text. Type checking of an assignment

it=i+1

547

548

the lambda
calculus is a
vehicle for
studying
languages

Chapter 14 / Static Types and the Lambda Calculus

deals only with the types of the left and right sides and not with the values of
variables. Types can therefore be studied by concentrating on expressions and
functional languages. Statements can be checked by giving them a special
type void. For example, the type-checking rule for conditional statements

§ = if E then 5, else 5,

can be expressed as follows:

The if-then-else construct is built up of an expression E of type bool for
boolean, and statements S; and S, of type void; the result S has type
void,

This rule treats the if-then-else constructor as if it were an operator in an
expression.

Functional languages can themselves be reduced to smaller core lan-
guages that are more convenient for the study of types.

The Lambda Calculus

The small syntax of the lambda calculus makes it a convenient vehicle for
studying types in programming languages. The pure lambda calculus has just
three constructs: variables, function application, and function creation. Never-
theless, it has had a profound influence on the design and analysis of pro-
gramming languages. Its surprising richness comes from the freedom to cre-
ate and apply functions, especially higher-order functions of functions.

The lambda calculus gets its name from the Greek letter lambda, A. The
notation Ax. M is used for a function with parameter x and body M. Thus,
Ax. x * x is a function that maps 5 to 5 * 5. Functions are written next to their
arguments, so f a is the application of function f to argument 4, as in sin 6 or
log n. In

(Ax. x*x) 5

function Ax. x*x is applied to 5. Formulas like (Ax. x#x) 5 are called terms.
Church [1941] introduced the pure lambda calculus in the 1930s to study
computation with functions. He was interested in the general properties of
functions, independently of any particular problem area. The integer 5 and
the multiplication operator * belong to arithmetic and are not part of the pure
calculus.
A grammar for terms in the pure lambda calculus is:

M = x| (M; My) | (Ax. M)

beta-e:
provides a

g

»

lues of
ns and
special
its

ool for
as type

r in an

re lan-

iicle for
has just
Never-
of pro-
1 to cre-

, A The
1. Thus,
- to their
sin O or

erms.
to study
serties of
er 5 and
the pure

141

beta-equality
provides a notion
of value

14.1 Equality of Pure Lambda Terms 549

We use letters f, x, y, z for variables and M, N, P, Q for terms. A term is either
a variable x, an application (M N) of function M to N, or an abstraction (Ax. M).
A constant ¢ can represent values like integers and operations on data struc-
tures like lists. That is, ¢ can stand for basic constants like true and nil as well
as constant functions like + and head.

The lambda calculi are therefore a family of languages for computation
with functions. Members of the family are obtained by choosing a set of con-
stants. In informal usage, ““the lambda calculus” refers to any member of this
family. '

The progression in this chapter is as follows:

o The pure lambda calculus is untyped. Functions can be applied freely;
it even makes sense to write (x x), where x is applied to itself. In formu-
lating a notion of computation for the pure calculus, we look at scope,
parameter passing, and evaluation strategies.

e A functional programming language is essentially a lambda calculus
with appropriate constants. This view will be supported by relating a
fragment of ML to a lambda calculus.

e The typed lambda calculus associates a type with each term.

e Finally, we consider a lambda calculus with polymorphic types that has
been used to study types in ML.

EQUALITY OF PURE LAMBDA TERMS

This chapter opened with an informal description of the pure lambda calculus:
x is a variable, (M N) represents the application of function M to N, and the
abstraction (Ax. M) represents a function with parameter x and body M. Now
it is time to be more precise about the roles of abstraction and application.

This section develops an equality relation on terms, called beta-equality for
historical reasons. We write M =g N if M and N are beta-equal. Informally, if
M =g N, then M and N must have the “same value.”

Beta-equality deals with the result of applying an abstraction (Ax. M) to
an argument N. In other words, beta-equality deals with the notions of func-
tion call and parameter passing in programming languages. An abstraction
corresponds to a function definition, and an application to a function call.
Suppose that function square is defined by

fun sguare(x) = x * x;

The function call square(5) is evaluated by substituting 5 for x in the body x*x.
In the terminology of this section, square(5) =g 5 * 5.

550 Chapter 14 / Static Types and the Lambda Calculus

Syntactic Conventions
The following abbreviations make terms more readable:

e Parentheses may be dropped from (M N) and (Ax. M). In the absence
of parentheses, function application groups from left to right. Thus,
x y z abbreviates ((x y) z), and the parentheses in x (y z) are necessary
to ensure that x is applied to (y z). Function application has higher
precedence than abstraction, so Ax. x z abbreviates (Ax. (x 2)).

e A sequence of consecutive abstractions, as in Ax. Ay. Az. M, can be writ-
ten with a single lambda, as in Axyz. M. Thus, Axy. x abbreviates
Ax. Ay. x.

The following terms will be used within the examples in this chapter:-
I=RAxx

K= hxy x

S = Axyz. (x 2) (y 2)

Here, S could have been written with fewer parentheses as Axyz. x z (y z). Its
full form is

S = (Ax. (Ay. (Az. ((x 2) (y 2)))))

A pure lambda term without free variables is called a closed term, or combi-
nator.

Free and Bound Variables

care is needed with ~ Abstractions of the form Ax. M are also referred to as bindings because they
free and bound ~ constrain the role of x in Ax. M. Variable x is said to be bound in Ax. M. The
ovariables set free(M) of free variables of M, the variables that appear unbound in M, is

given by the following syntax-directed rules:

free(x) = {x}
free(M N) = free(M) © free(N)
free(Ax. M) = free(M) — {x}

In words, variable x is free in the term x. A variable is free in M N if it is either
free in M or free in N. With the exception of x, all other free variables of M are
free in Ax. M.

Free variables have been a trouble spot in both programming languages
and the lambda calculus, so we take a closer look at them. For example, zisa
free variable of the following term because it is free in the subterm Ay. z:

a nam
occurs i
variable {
bouna

2 absence
ht. Thus,
necessary
ias higher

n be writ-
bbreviates

pter:)

z(yz). Its

1, or combi-

cause they
vx. M. The
ad in M, is

f it is either
les of M are

: languages
mple, zis a
AY. Z:

14.1 Equality of Pure Lambda Terms 551

(Ay. z) (Az. z)

We now introduce a way of distinguishing between this first occurrence of z
and the other ones in the subterm (Az. z).

The occurrence of x to the right of the A in Ax. M is called a binding occur-
rence or simply a binding of x. All occurrences of x in Ax. M are bound within
the scope of this binding. All unbound occurrences of a variable in a term are
free. Each occurrence of a variable is either free or bound; it cannot be both.

The only occurrence of x in Ax. y is bound within its own scope. The lines
in the following diagram go from a binding to a bound occurrence of y, and
from a binding to bound occurrences of z.

?Ly(‘hz.xz(;z)
Lt

In this diagram, the occurrence of x is free because it is not within the scope of
any binding within the term.

Substitution

aname clash The result of applying an abstraction (Ax. M) to an argument N will be for-
occurs ifa free. malized by “substituting” N for x in M. Informally, N replaces all free occur-
variable in N is rences of x in M. A definition of substitution is rather tricky, as evidenced bya
bound in M long history of inadequate definitions. The following definition first tackles
the easy case, which suffices for most examples. A more precise syntax-

directed definition appears in Section 14.2,
The substitution of a term N for a variable x in M is written as { N/x} M

and is defined as follows:

1. Suppose that the free variables of N have no bound occurrences in M.
Then, the term {N/x} M is formed by replacing all free occurrences of x
in M by N.

2. Otherwise, suppose that variable y is free in N and bound in M. Con-
sistently replace the binding and corresponding bound occurrences of y
in M by some fresh variable z.! Repeat the renaming of bound variables
in M until case 1 applies, then proceed as in case 1.

Example 14.1 In each of the following cases, M has no bound occurrences,
so N replaces all occurrences of x in M to form {N/x} M:

! The syntax of A-terms can be made independent of the spellings of variables by using positional
indexes, as in de Bruijn [1972]. Positional indexes eliminate the need for renaming.

552

beta-equality is a
congruence: equals
can be replaced by
equals

Chapter 14 / Static Types and the Lambda Calculus

{ujx}x = u
{ufx) (xx) = (uu)
{ufx} (xy) = (wy)
{ufx} (x u) = (uu)

{(Ax. x)/x) x = (Ax. x)

In the following cases, M has no free occurrences of x, so {N/x} M is M itself:

{ufxty =y
{u/x} (y z) = (y 2)
{u/x} Qy.y) = Ay y)
{u/x} (Ax. x) = (Ax. x)

{Ax. x)/x}y =y

In the following cases, free variable # in N has bound occurrences in M, so
{N/x} M is formed by first renaming the bound occurrences of u in M:

{ufx} (A x) = {u/x} (hz. x) = (Az. u)

{ufx} (A u) = {u/x} (Az.z) = (Az. z) O

Beta-Equality

The key axiom of beta-equality is as follows:
(Ax. M) N =5 (N/xIM (B axiom)

Thus, (Ax. x) u =p U and (Ax. y) u =g ¥
The following axiom allows bound variables to be systematically
renamed:

(Ax. M) =g Az {z/x} M provided that z isnot freein M (ot axiom)

Thus, Ax. x =p Ay. yand Axy. x =g Auv. u.

The remaining rules for beta-equality formalize general properties of
equalities (see Fig. 14.1). Each of the following must be true with any notion
of equality on terms:

Idempotence. A term M equals itself.
Commutativity. If M equals N, then, conversely, N must equal M.
Transitivity. If M equals N and N equals P, then M equals P.>

% An equivalence relation on a set S is any binary relation that has the idempotence, commutativity,
and transitivity properties.

i

5 M itself:

es in M, so

(B axiom)
sstematically
(o axiom)

oroperties of
h any notion

1al M.

32

», commutativity,

14.1 Equality of Pure Lambda Terms 553

(Ax. M) =y Az {z/x} M provided that z is not free in M (o axiom)
(Ax. M) N =5 (N/x]M (B axiom)
M=y M (idempotence axiom)
i L (tativity rule)
B W commutativity rule
M=y N N =P (s o)
M= P transitivity rule
M =B M’ N =B N’ (1)
MN = M N congruence rule
M =y M’

m (congruence rule)

Figure 14.1 Axjoms and rules for beta-equality.

The replacement of equals for equals is formalized by the two congruence
rules in Fig. 14.1. The first rule can be read as follows:

IfM =5 M"and N =g N’, then M N =g M' N,
Furthermore,
IfM =5 M’, then Ax. M =5 Ax. M.

Example 142 The axioms and rules for beta-equality will be applied to
show that

S =p Az. zz

Application groups from left to right, so SII is written for (SI)I. S is reserved
for Axyz. xz (yz) and I is reserved for Ax. x, so SI is

(Axyz. xz(yz)) (Ax. x) (Ax. x)

554

14.2

Chapter 14 / Static Types and the Lambda Calculus

This example concentrates on the o and P axioms; subterms to which these
axioms apply will be highlighted by underlining them. We begin by using the
o axiom to rename bound variables, for clarity.

(xyz. x2(y2)) (Ax.x) (Ax.x) =5 (hayz. xz(yz)) (Au. u) (Ax. x)

The second copy of Ax. x is now renamed into Av. v:

(Axyz. xz(yz)) (Au. u) (Ax. x) =p (xyz. xz(yz)) (Au. u) (Av. 0)

The resulting term on the right side of this equality has only one binding for
each variable.

The first change in the structure of the term is due to the p axiom:

(uxyz. xz(yz)) (A u) o.v) =5 (hyz. (Au. u) z (yz)) (Av. V)

The right side is formed by substituting (Au. u) for x in (Ayz. xz(yz)). Three
more applications of the [axiom are needed to complete the proof of
SII = Az. zz:

SI =5 (Ayz. (Au.u) z (yz)) (Ao v) -

=g (\yz. z (yz)) (Av. V)
=p Az.z ((hv.v) z)
ZB ;\.Z. ZZ O

SUBSTITUTION REVISITED

The description of substitution on page 551 can be summarized as follows. If
the free variables of N have no bound occurrences in M, then {N/x} M is
formed by replacing all free occurrences of x in M by N; otherwise, bound
variables in M are renamed until this rule applies. This section contains a
syntax-directed definition of substitution.

The next example motivates the renaming of bound variables during sub-
stitution.

Example 14.3 Consider the term Axy. minus X y. Formally, minus is just a
variable; intuitively, minus x y stands for the subtraction x — y. This example

studies the term

(Aup. minus U v) v U

which these
)y using the

X%)

. v)
binding for
m:

. v)

yz)). Three
e proof of

follows. If
IN/x} M is
‘ise, bound
contains a

luring sub-

us is just &
is example

14.2 Substitution Revisited 555

Since bound variables can be renamed, we can rewrite this term as
(Axy. minus x y) v u
Two applications of the B axiom from Fig. 14.1 yield

(Axy. minus x y) v u =s (Ay. minus v y) u
=p MInUs v u

The original term therefore satisfies the equality
(Auv. minus u v) vu =5 minus v u

The naive approach of implementing {N/x} M by putting N in place of the
free occurrences of x in M incorrectly suggests the following equality:

{oful(Av. minus u v) 2= Av. minus v v
The correct result is obtained if the bound variable v is renamed:
(v/ub(Az. minus u z) = Az minus vz]

The substitution of N for x in M, written {N/x}M, is defined by the
syntax-directed rules in Fig. 14.2. We use P and Q to refer to subterms of M.

In words, the substitution of N for x in x yields N. If y is a variable differ-
ent from x, then y is left unchanged by the substitution of N for x in .

The substitution of N for x distributes across an application (P Q); that is,
we substitute N for x in both P and Q.

The tricky case occurs when N is substituted for x in an abstraction:

[Njfxtx =N
(N/x}y =y VER
{N/x) (P Q) = (N/x} P {N/x] Q
{N/x} (Ax. P) = hx. P
[N/x} (Ay. P) = Ay. {N/x} P y#Ex,ye free(N)
{N/x}(Ay. P) = Az {Nfx)z/y}P y#xz¢e free(N)j,zg free(P)
Figure 14.2 Rules for substitution.

e —

5

556

e

iy A R e

|

14.3

reductions can be

applied in any
order

Chapter 14 / Static Types and the Lambda Calculus

1. Since x is not free in Ax. P, the term Ax. P itself is the result of substitut-
ing N for the free occurrences of x in it.

5 Consider the substitution of N for x in Ay. P, with y different from x. If
y is not free in N, then the result is Ay. {N/x}P.

3. Finally, suppose that y is free in N. Bound variables can be renamed, so
we rename y in Ay. P by a fresh variable z. Of course, z must be a vari-
able that is not free in N and not free in P. The renaming of y in Ay. P
yields Az. {z /y}P. The substitution of N for x in Az. {z/y}P yields
Az. (N/x}z[y} P.

Example 14.4 The reader is urged to verify the following equalities:

{u/x) (Au. x) = (Az. u)
{u/x} hu. u) = (Az. z)
{u/x) (Ay. x) = (Ay. u)
{u/x} (Ay. u) = (Ay. u)

The first equality deals with the substitution of u for x in (Au. x). Blind
substitution of u for x leads to the wrong answer (Au. u). O

COMPUTATION WITH PURE LAMBDA TERMS

Computation in the lambda calculus is symbolic. A term is “reduced” into as
simple a form as possible. Among the two beta-equal terms

(Ax. M) N =5 {N/x}M

the right side {N/x} M is considered to be simpler than (Ax. M) N. Among
Axy. x)uv =g (Ay.u)v = u

u is simpler than (Ay. u) v, which in turn is simpler than (Axy. x) u v.
These observations motivate a rewriting rule called B-reduction. An addi-

tional rule, called o-conversion, renames bound variables.

(N/x} M (B-reduction)

Ay. {y/x} M ynot free in M (o-conversion)

(Ax. M) N

T
Axe. M 2

Now (Axy. x) u 7 (Ay. w)and Ay w) v 3w
This section examines B-reduction. A fundamental result of the lambda
calculus implies that the result of a computation is independent of the order in

which B-reductions are applied.

a term is
form if i

>f substitut-
At from x. If
renamed, 50
ist be a vari-] a term is in normal

of y in 7&?- R s form if it cannot be
Jy}P yields reduced

ies:

M. x). Blind
|

uced’” into as

N. Among

) u .
tion. An addi-

(B_reduction)

(o-conversion)

of the lambda
- of the order in

14.3 Computation with Pure Lambda Terms 557

Reductions

We write P = (Q if a subterm of P is B-reduced to create Q. A subterm of the
form (Ax. M)ﬁ N is called a redex, for “reduction expression.”” Thus, if P = Q
then P has a redex (Ax. M) N that is replaced by {N/x} M to create Q. Simi-
larly, we write P = Q if a-conversion of a subterm of P yields Q.

A reduction is any sequence of B-reductions and o-conversions. A term
that cannot be f-reduced is said to be in B-normal form, or simply in normal
form. The term Az. zz is in normal form because none of its subterms is a redex
of the form (Ax. M) N.

The following example considers alternative reductions that start with SII
and end with the normal form Az. zz.

Example 14.5 In Fig. 14.3, redexes are underlined and arrows represent B-
reductions. Some of the lines are dashed for clarity.

The starting term at the top of the figure is SII. Again, S is Axyz. xz (yz)
and I is Ax. x, so the starting term is

(Axyz. xz (yz)) (Ax. x) (Ax. x)
Upon B-reduction of the only redex in this term, we get

Ayz. (Ax. x) z (yz)) (Ax. x)
This term has two redexes. The entire term is a redex, and so is the subterm
(Ax. x) z. The following reduction begins by reducing the inner redex:

SII = (Axyz. xz(yz)) (hx. x) (Ax. x)

]
{ljz (Ax. x)z(yz)) (Ax. x)
/ T e
(Ayz. z (yz)) (Ax. x) Az.(Ax. x) z (Ax. x) z)
\ / S e
Az z ((Ax. x) 2) Az.(Ax. x) zz
\ /
Az.zz

Figure 14.3 Alternative reductions from SII to Az. zz.

Chapter 14 / Static Types and the Lambda Calculus

(Ayz. Owx. x) z (yz)) (Ax. x) T (yz. z (y2)) (Ax. x)
T Azz((Ax.x)z)
T Azzz
Each path in Fig. 14.3 represents a reduction from SII to Az. zz, O

Nonterminating Reductions

It is possible for a reduction to continue forever, without reaching a normal
form. Reductions starting with

(Ax. xx)(Ax. xx)

do not terminate. For clarity, let us o-convert the first (Ax. xx) into (Ay. yy).
Then

Ay. yy) (Ax. xx) T xoxx)(Ax. xx)
and we are back where we started.

The first few steps of a more “useful” nonterminating computation
appear in Fig. 14.4. The computation begins with Yf, where Y is a special term
such that Yf reduces to f(Yf). Yisan example of a “fixed-point combinator.”

A combinator is a pure lambda term without free variables, A combinator
M is called a fixed-point combinator if Mf =p f (Mf). The significance of fixed-
point combinators is explored in Section 14.4, where fixed-point combinators
will be used to set up recursions.

The Church-Rosser Theorem

The result “normal forms are unique, if they exist,” applies to reductions that
terminate in normal forms. A stronger result, called the Church-Rosser theorem,
applies to all reductions, even nonterminating ones. One form of this theorem
is illustrated in Fig. 14.5. For all starting terms M, suppose that one sequence

Yf o= (f (x f(xx)) . f(ax) f
T x flxx)) (Ax f(xx))
T f (Qx fxx)) (x. f(xx)))
= f(¥f)
Figure 14.4 The term Yf B-reduces tof (Yf).

1g a normal

ato (Ay. yy).

‘omputation
special term
nbinator.”
combinator
nce of fixed-
combinators

uctions that
sser theorem,
‘his theorem
ne sequence

14.3 Computation with Pure Lambda Terms 559

Figure 14.5 If M reduces to P and to Q, then both can reach some common R.

of reductions takes M to P and that another sequence takes M to Q. Then we
can always find some common term R, such that P can reduce to R and Q can
also reduce to R. The filled circles next to M, P, and Q emphasize that the
result holds for all such M, P, and Q. The open circle at R emphasizes that
only some terms R are reachable from both P and Q.

The following statement of the Church-Rosser theorem uses the notation
= for a sequence of zero or more o-conversions and B-reductions. We write
P=QHP=Qorif P Q Thus, P = Q means that for some terms
Py, Py,..., P;, wherek =0,

P=Py=pP,=... 2P, =0
Note that P = P holds; this case corresponds to k = 0.

Church-Rosser Theorem. For all pure A-terms M, P, and Q, if M = Pand
M % Q, then there must exist a term R such that P = R and QR |

The Church-Rosser theorem says that the result of a computation does not
depend on the order in which reductions are applied. All possible reduction
sequences progress toward the same end result. The end result is a normal
form, if one exists.

The Church-Rosser theorem extends to any Jwo beta—eq*ual terms: If
P =g (, then there must exist a term R such that P = R and Q= R.

Computation Rules

Function applications M N in programming languages are often implemented
as follows: evaluate both M and N, then pass the value of the argument N to
the function obtained from M. With this approach, functions are said to be
called by value. A similar computation rule can be defined for B-reductions in
the lambda calculus.

560

leftmost-outermost
reaches a normal
form if there is one

Chapter 14 / Static Types and the Lambda Calculus

A reduction strategy for the lambda calculus is a rule for choosing redexes;
formally, a reduction strategy maps each term P that is not in normal form
into a term Q such that P = Q.

The call-by-value reduction strategy chooses the leftmost-innermost redex in
a term. By contrast, the call-by-name reduction strateqy chooses the leftmost-
outermost redex. Here, inner and outer refer to nesting of terms. For exam-
ple, the entire term is the outermost redex in

(Ayz. (Ax. x) z (yz)) (Ax. x)

The innermost redex is the subterm (Ax. x) z:
(Ayz. (Ax. %) z (yz)) (Ax. x)

The call-by-name strategy is also referred to as normal-order reduction; it is
guaranteed to reach a normal form, if one exists. Call-by-value, on the other
hand, can get stuck, forever evaluating an argument that will never be used.
An example can be constructed using K = Axy. x:

(Axy. x) z N T (y.z) N 3 Z (call-by-name)

Call-by-value, however, will reduce the innermost redex in the subterm N
rather than the entire term (Ay. z) N. If reductions starting from N do not ter-
minate, then call-by-value will fail to reach the normal form z. Such an N is
(Ax. xx)(Ax. xx), which reduces to itself:

Ay z) ((Ax. xx)(Ax. xx)) (Ay. z) ((Ax. xx)(Ax. xx))

LA z) (G 2 Rz 2005

= = =|

(call-by-value)

Despite the possibility of an avoidable runaway evaluation, functional lan-
guages have used call-by-value because it can be implemented efficiently and
it reaches the normal form sufficiently often.

Example 14.6 Call-by-value can reach a normal form faster than call-by-
name, where faster means using fewer B-reductions. The term in this example
has the form (Ax. xx) N. Since the body xx of Ax. xx has two copies of x, call-
by-value will win by first reducing N to a normal form.

The call-by-value reduction takes.three steps:

add cons
get an
lambda

g redexes;
‘mal form

it redex in
+ leftmost-
For exam-

ction; it is
the other
r be used.

-by-name)

ubterm N
1o not ter-
‘h an N is

‘by-value)

-ional lan-
ently and

n call-by-
5 example
of x, call-

14.4

add constants to
get an applied
lambda calculus

14.4 Programming Constructs as Lambda-Terms 561

(Ax. xx) ((Ay. y) (Az.z)) g (Ax. xx) (Az. z)
=B> (Az. z) (Az. 2)

:l? (Az. 2)
The call-by-name reduction takes four steps:
(Ax. xx) ((Ay. y) (Az. z)) T Oy y) Az 2)) (Ay. y) (Az. 2))
7 Az z) ((y. y) (Az. 2))
(Ay. y) Az z)

it
=[;> (Az. z))

PROGRAMMING CONSTRUCTS AS LAMBDA-TERMS

Constants and a little syntactic sugar will be added to the pure lambda calcu-
lus in this section to build a tiny functional programming language, called
MLO . The purpose is not to build a real language but to support the claim
that a functional language is essentially a lambda calculus. Certain properties
of programming languages can therefore be studied in terms of the lambda
calculus.

An Applied Lambda Calculus

Terms in an applied lambda calculus have the following syntax:
M == ¢ | x| (M;yMy) | (Ax. M)

Constants, represented by ¢, correspond to the built-in constants and opera-
tors in a programming language. Each applied lambda calculus has its own
set of constants. The constants in this section are

true, false

if

0, iszero, pred, succ

fix

The definitions of free and bound variables, substitution, o-conversion,
and B-reduction carry over from the pure calculus to an applied calculus. As

usual, parentheses can be dropped, so

if x y false

is a way of writing

