
1

Types-1

•  What is a type?
•  “Type safe” programs
•  Strong type systems
•  Type checking

–  Static versus dynamic
•  Polymorphism

–  Ad hoc: coercion, overloading
–  Parametric: generics

1

What is a type?

•  Type: a set of values and meaningful operations
on them

•  Types provide semantic sanity checks on
programs
–  Analogous to units conversions in physics, convert

feet per second to inches per minute
•  (feet/second) (seconds/minute) (inches/feet)

–  How specify types?
–  How check their usage in actual programs?

2

2

Types
•  Implicit

–  If variables are typed by usage
•  Prolog, Scheme, Lisp, Smalltalk

•  Explicit
–  If declarations bind types to variables at compile

time
•  Pascal, Algol68, C, C++, Java

•  Mixture
–  Implicit by default but allows explicit declarations

•  Haskell, ML

3

Type System

•  Rules for constructing types
•  Rules for determining/inferring the type of

expressions
•  Rules for type compatibility:

–  In what contexts can values of a type be used (e.g.,
in assignment, as arguments of functions,...)

•  Rules for type equivalence or type conversion
•  Determining (ensuring) that an expression can be

used in some context

4

3

Types of Expressions

•  If f has type S → T and x has type S, then f(x)
has type T
–  type of 3 div 2 is int
–  type of round(3.5) is int

•  Type error - using wrongly typed operands in an
operation
–  round(“Nancy”)
–  3.5 div 2
–  “abc”+ 3

5

Type Checking

•  Goal: to find out as early as possible, if each
procedure and operator is supplied with the
correct type of arguments
–  Type error: when a type is used improperly in a

context
–  Type checking performed to prevent type errors

•  Modern PLs often designed to do type checking
(as much as possible) during compilation

6

4

When type checking occurs?

•  Compile-time (static)
–  At compile time, uses declaration information or can

infer types from variable uses
•  Run-time (dynamic)

–  During execution, checks type of object before doing
operations on it

•  Uses type tags to record types of variables

•  Combined (compile- and run-time) type checking
–  Most modern PLs

7

Type Safety

•  A type safe program executes on all inputs
without type errors
–  Goal of type checking is to ensure type safety
–  Type safe does not mean without errors

read n;
if n>0 then {y:=“ab”;

 if n<0 then x := y-5;}

–  Note that assignment to x is never executed so
program is type safe (yet contains an error).

8

5

Strong Typing
•  Strongly typed PL

–  PL requires all programs to be type checkable
–  PL’s type system only accepts only safe expressions (guaranteed

to evaluate without a type error)

•  Statically strongly typed PL - compiler allows
only programs that can be type checked fully at
compile time
–  If the type of any expression can be fully

determined at compile-time. How?
•  Explicit declaration, or
•  Type reconstruction (sometimes called type inference)

9

Strong Typing

•  Dynamically strongly typed PL -Operations
include code to check run-time types of
operands, if type cannot be determined at
compile time

•  C++, Java

10

6

Definitions, cont.
all programs

type safe programs

programs written in PL
with strong type system

programs written in PL
with weak type systems;
weak type systems allow
unsafe programs

programs written
in PL with statically
checkable type system

11

Type Equivalence

•  Governs which constructed types are considered
“equivalent” for operations such as assignment
and copy statements

•  Two main flavors:
–  Structural equivalence
–  Name equivalence

12

7

Types formed by construction

•  Constructive point of view
–  Primitive types e.g., int, char, bool,

enum{red,green,yellow}
–  Composite/constructed types:

•  reference e.g., pointerTo(int)
•  array e.g., arrayOf(char) or arrayOf(char,20) or ...
•  record/structure e.g., record(age:int, name:string)
•  union e.g. union(int, pointerTo(char))
•  list e.g., list(...)
•  function e.g., float → int
CAN BE NESTED! pointerTo(arrayOf(pointerTo(char)))

13

Equality of Structured Types

•  Structural equivalence: types are equivalent as
terms
–  Same primitive type
–  Formed by application of same type constructors to

structurally equivalent types
–  Shortcoming as shown in Pascal:

type salary: int; var s: salary;
type height: int; var y: height
cannot outlaw s+y by structural equivalence rules.

–  Used by Algol-68, Modula-3, ML and C (except for its
structs)

14

8

Equality of Structured Types
•  Name equivalence: use name of type to assert

equivalence
•  In Ada: type height: int

 var x: list (int) x,y considered same type
 var y: list (int) y,s considered different types!
 var s: list (height)

–  Shortcoming, in Pascal
 type cell = record info: int, next: ^cell end;
 type link = ^ cell;
 var first, last: link;
 begin if first.next = last then… comparison isn’t valid
 by either name or struct. eq

types: ^cell link

Used by Java 15

Equality of Structured Types

•  Declaration equivalence: variables need to be
declared in same declaration statement.

p: ^cell p,q not compatible types
q: ^cell s,t are compatible types
s,t: ^cell

•  Bizarre rule not longer used (ISO Pascal)

16

9

Types

•  Monomorphic: Conventionally, PL objects have
one type

•  Polymorphic: Some PLs allow objects to have
more than one type (e.g., nil value for lists and
pointers)

(good article on typing by Cardelli+Wegner Computer Surveys, 12/85)

17

Polymorphism

•  Ad hoc (apparent) : function appears to work on
several different types, but may behave in
different ways for different types
–  Overloading: same name denotes different functions;

compiler decides which one by context
–  Coercion: semantic operation needed to convert an

argument to the correct type expected by the
function

•  Statically or dynamically
•  Algol68 only allowed explicit type conversions, but it never

caught hold so this solution is not popular

18

10

Polymorphism

•  Parametric: function works uniformly on a range
of types; (e.g., cons, length); often executes the
same code no matter what type the arguments
are
–  Generic functions: parameterized template which has

to be instantiated to actual parameter values before
usage

•  Macro-expansion semantics at compile-time
–  True parametric polymorphic functions have only 1

copy of code
•  ML is the paradigm PL

19

20

Polymorphism

•  Ada, Pascal are monomorphic, but have
–  overloaded arithmetic operators, + * can have mixes

of real or int arguments
–  coercion, int → real allowed
–  subtyping, 1..N is subtype of int
–  value sharing, nil shared by all pointer types

11

21

Typing Statements

•  Problem: what to do about typing statements?
 use special type called void

|- y: τ , |- e: τ |- s1: void, s2:void |-b:bool,|- s:void
|- y:=e : void |- s1; s2 :void |- if b then s:void
Assignment Stmt sequence If stmt

