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Types-2 

•  Polymorphism 
•  Type reconstruction (type inference) for a 

simple PL 
•  Typing functions 
–  Coercion, conversion, reconstruction 

•  Rich area of programming language research as 
people try to provide safety assertions about 
code as part of type systems 
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Polymorphism 

•  Motivation: to allow flexibility in 
implementation with automatic adaptation to 
correctly typed operations for parameter types 
used 
–  Ease of design (gets rid of special cases) 
–  Ease of maintenance (1 copy of code) 
–  A cool idea 
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Polymorphism - Realization 

•  Ad hoc polymorphism 
– Use coercion to make types work  
– Overloading – same name used for different functions – 

compiler chooses by context information 
•  Parametric polymorphism – generics 

•  Code is same for range of types, parameterized by the type 
and instantiated to particular types when code is generated 

•  True polymorphism –  
•  Only one copy of the code! (e.g., ML, Ocaml) 

•  Question: Do types have to be declared or can 
they be deduced in a PL allowing polymorphism?  
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How type reconstruction  
(type inference)  works? 

⏐- <expression> : <type> 
1. can always type a constant ⏐- 5.8 : ft/sec 
2. can build rules for combining types in expressions 
e.g.,  Distance = Velocity * Time  Conversions 
⏐-  e1 : ft/sec, ⏐- e2: sec   ⏐- e1:ft/sec, ⏐- e2: sec/min 

⏐- e1*e2 : ft       ⏐- e1*e2 : ft/min 
 Velocity = Distance / Time 
  ⏐- e1: ft, ⏐- e2: sec 
   ⏐- e1/e2: ft/sec 
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Type Reconstruction -1 

•  See handout for small expression language 
definition 
Types: τ → Int | Char | Bool … primitive PL types 
 
 τ → Pointer(τ)  | Tuple (τ,τ) | List(τ) | …constructed PL 

 Record(label τ, label τ, ...) types 
 
Expressions syntax: e → <intLiteral> | <listLiteral>|… 
e → varId | (e) 
e → e mod e | e + e | e and e | e or e | not e …     

 Boolean/numerical operations 
e → e eq e     comparison operator 
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Type Reconstruction -2 

 e → deref e     pointer operation 
 e → fst e | snd e |  pair(e,e)   tuple operations 
 e → hd e | tail e | cons (e,e)  list operations 
 where <intLiteral> → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
 <listLiteral> → nil, etc.  
•  To perform type reconstruction, we need 

assumptions for types of constants and then 
define type deduction rules to type other 
constructs 

list constructor 

tuple constructor 
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Type Reconstruction - 3 

•  Type rules define the types of results of legal 
operations  
Constants:  c :τ |- c : τ  given in type environment 
Variables:  y: τ |- y: τ  e.g., in declarations 
 
Arithmetic:   |- e1: Int, |- e2: Int     means mod op   

       |- (e1 mod e2) : Int   only applicable to 
                  integers 

 
Equality:   |- e1 : τ , |- e2 : τ      can only compare

 |-  (e1 eq e2) : Bool  exprs of same type 
                   result is Boolean 

Types-­‐2,	
  CS5314	
  ©	
  BGRyder	
  	
   7	
  

Type Reconstruction - 4 
 Deref:  |- e: Pointer(τ)  can only apply deref operator        
    |- deref(e) : τ      to pointer type 

•  Examples of use of rules 
fst(1, 2.0) + snd(3.5, 5) 

 τ1 = Tuple (Int, Real), τ2 = Tuple (Real, Int) 
   fst(τ1) : Int, snd(τ2) : Int, therefore + operation is 

well-typed 
fst(1, 2.0) + hd(cons(5, nil)) 

 τ1 = Tuple(Int, Real),  and we want: τ2 = List(Int) 
 but how to get this?   
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Type Reconstruction - 5 
•  Need two more rules to type lists: 

[Cons] |- e1: τ , |-  e2: List(τ)     (1) 
         |- cons(e1, e2): List(τ) 
         |- nil: List[ _ ]  (2)   read this as List of any type 

or instead use rules (1) and (3): 
         |-  e:τ           (3)
         |-  cons(e, nil) : List(τ) 

means lists are made up of homogeneously 
typed elements, but not necessarily of 
primitive type  e.g., List (Tuple( Int, Bool )) is legal 

Types-­‐2,	
  CS5314	
  ©	
  BGRyder	
  	
   9	
  

10	
  

Typing Statements 

•  Problem: what to do about typing statements?  
 can use special type called void for correctly 
typed statements  

 
 |- y: τ ,  |- e: τ     |- s1: void, s2:void      |-b:bool,|- s:void  
 |-  y:=e : void   |- s1; s2 :void              |- if b then s:void  
 Assignment         Stmt sequence                If stmt 
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Typing Functions -1 

•  Want to write a truly polymorphic function and 
be able to use it on arguments of different types 

   length L = if L=nil then 0 else 1 + length (tl(L));

has type signature: 
length: List( _ ) → Int 
–  Examples from our small expression language 

cons : τ → List[ τ ] → List [τ ] 
pair: σ  * τ → Tuple( σ,τ ) 
fst: Tuple( σ,τ ) → σ 
if_then_else: bool  *  τ  *  τ → τ 
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Typing Functions -2 

•  Need for type variables to represent unknown 
types during reconstruction 
∀α. List(α ) → int  is type of SML length function 
Type of deref: ∀β. Pointer(β) → β
Note: ∀α does not include type error, which is used in type 

checking – more later on this 

•  Need new inference rule for function application:    
                                |- e1: σ → τ, |- e2: σ

                          |-  e1(e2) : τ  
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Typing Functions -3 
•  Functions are usually typed in their curried form 

incr(k,x) = x + k;   plus(k), curried incr   
incr: Tuple(int, int) → int  plus: int → (int → int)  
In curried form can use previous slide’s inference rule 

•  What is a curried form of a function? 
–  “A process of transforming a function that takes multiple 

arguments into a function that takes one argument and 
returns another function if any arguments are still 
needed.” from https://wiki.haskell.org/Currying 

•  Currying, an idea from functional programming in which 
functions are first-class 

•  Functions can be values assigned to a variable, passed as 
parameters, applied to arguments (of the right type) 
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Curried Form of a Function 

•  Continuing with our example of incr 
•  Incr(K,X) is function of type int x int à int 
•  Incr(5,X) returns a value of X+5 (function application) 
•  Plus(K) is of type int à (int à int) 
•  Plus(5) returns a function that adds 5 to its argument; 

we write this as lambda(X) = 5 + X (more later on this too)   

•  Currying is a notion from functional programming in 
which functions are first-class 

•  Functions can be values assigned to a variable, passed as 
parameters, applied to arguments (of the right type) 
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Reconstructing Function Types -1 
(ASU’86 ed, 6.6) 

•  High-level view 
1. Introduce new type variables for the function and 

its parameters. 
2. Setup equations that must hold for these variables 

based on statements within the function (infer 
compatible types from uses). 

3. Solve these equations. 
 a. If reach a type error, report it. 
 b. If can get values for all type variables, then the 
equations are consistent. 
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Reconstructing Function Types - 2 

c. Note: type value solution process involves using 
unification to see if two type variables, currently 
bound to specific types (represented by trees), can 
be unified to the same type; implementation uses the 
union-find algorithm 

4. Add a new variable to the type environment to 
represent this function 
 δ = Analyze(fcn_body, E) 

•  For an example, we will type the SML length 
function for lists 
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Analyze (e, E) 
•  e is expression, E is type environment 
•  if e is a type variable τ, return E[τ] 
•  if e is an identifier id,  return E[id]  

–  with all ∀ variables renamed and ∀ dropped 
•  e.g., ∀ α, α x List(α) --> List(α) is type of cons 
•  e.g., ∀ α, bool x α x α --> α is type of if 
•  e.g., ∀ α, α-->β  becomes γ-->β, an arbitrary function 

•  if e is function application, f(e1,…,ek) 
–  let t1 - Analyze (e1, E)… 
–  let s - Analyze (f, E) 
–  introduce fresh type variable, δ
–  add equation (t1 x t2 x…x tk --> δ) = s and return δ

•  if e is a function definition, we need to follow the 
reasoning in this example….
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Trace Algm Example -1 

Analyze (lng (n) ≡ if (null n) then 0 else (1 + lng(tl n)),  E); 
Rule 1. Extend E[n] = γ , E[lng] = {γ →  δ}
Rule 2. Analyze function body. 

 Analyze (if ((null n), 0, (1+lng(tl n))),  E). 
 t1 = Analyze (e1, E) for e1 = (null n)  fcn application 
  t11 = Analyze (n) ≈ E[n] = {γ}  identifier 
  s11 = Analyze (null) ≈ E[null]= {list α  → bool} identifier 
  get new type variable β  
  γ  → β = list α  → bool  (1) 
  return β as type of function application. 
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Trace Algm Example -2 
Analyze (lng (n) ≡ if (null n) then 0 else (1 + lng(tl n)),  E); 
 t2 = Analyze(0,E) ≈ {int}  constant 
 t3 = Analyze (1+lng(tl n))  another fcn application 

  t31=Analyze(1,E) ≈ {int} 
  t32 = Analyze(lng(tl n), E) 
     t321 = Analyze((tl n),E) analyze the arg 
   t3211 = Analyze(n,E) ≈ {γ}   identifier 
      s3211 = Analyze(tl,E) ≈ {list µ  → list µ}  
     new type variable σ  
      γ  → σ = list µ  → list µ (2) 
   return σ as type of function application 
     s321 = Analyze(lng,E) ≈ {γ  → δ } from fcn signature 
     new type variable Γ
     σ  → Γ = γ  → δ (3) 
     return Γ  as type of function application 
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Trace Algm Example -3 

  s31 = Analyze(+,E) ≈ {int * int → int} 
  new type variable Δ  
  int * Γ → Δ = int * int → int (4) 
  return Δ
 s1 = Analyze(if,E) = {bool * ψ * ψ → ψ} 
 new type variable ρ 
 β  *  int  *  Δ → ρ = bool * ψ * ψ →  ψ (5) 
return ρ  
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Trace Algm Example -4 

Rule 3: solve equations using unification using most 
general unifier  

(1) γ  → β = list α  → bool   
(2) γ  → σ = list µ  →list µ 
(3) σ  → Γ = γ  → δ 
(4) int * Γ → Δ = int * int → int  
(5) β  *  int  *  Δ → ρ = bool  *  ψ  *  ψ →  ψ 
β = bool (from 1.) 
γ = σ = list µ (from 2.,3.) 
γ = list α (from 1.) (note: list α  and list µ are same type) 
δ  = Γ = Δ = int (from 3.,4.) 
Finally we obtain:  
lng: γ  → δ = list µ  → int
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Trace Algm Example -5 

•  In ASU’86 p375 
–  Is trace of our algorithm as lines in a table in the 

same order as our slides 
–  Looks like a bottom up traversal of a type tree, 

typing the subtrees and then going upwards to type 
higher subtrees 
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