
3/15/16	

1	

Types-2

•  Polymorphism
•  Type reconstruction (type inference) for a

simple PL
•  Typing functions
–  Coercion, conversion, reconstruction

•  Rich area of programming language research as
people try to provide safety assertions about
code as part of type systems

Types-­‐2,	
 CS5314	
 ©	
 BGRyder	
 	
 1	

Polymorphism

•  Motivation: to allow flexibility in
implementation with automatic adaptation to
correctly typed operations for parameter types
used
–  Ease of design (gets rid of special cases)
–  Ease of maintenance (1 copy of code)
–  A cool idea

Types-­‐2,	
 CS5314	
 ©	
 BGRyder	
 	
 2	

3/15/16	

2	

Polymorphism - Realization

•  Ad hoc polymorphism
– Use coercion to make types work
– Overloading – same name used for different functions –

compiler chooses by context information
•  Parametric polymorphism – generics

•  Code is same for range of types, parameterized by the type
and instantiated to particular types when code is generated

•  True polymorphism –
•  Only one copy of the code! (e.g., ML, Ocaml)

•  Question: Do types have to be declared or can
they be deduced in a PL allowing polymorphism?

Types-­‐2,	
 CS5314	
 ©	
 BGRyder	
 	
 3	

How type reconstruction
(type inference) works?

⏐- <expression> : <type>
1. can always type a constant ⏐- 5.8 : ft/sec
2. can build rules for combining types in expressions
e.g., Distance = Velocity * Time Conversions
⏐- e1 : ft/sec, ⏐- e2: sec ⏐- e1:ft/sec, ⏐- e2: sec/min

⏐- e1*e2 : ft ⏐- e1*e2 : ft/min
 Velocity = Distance / Time
 ⏐- e1: ft, ⏐- e2: sec
 ⏐- e1/e2: ft/sec

Types-­‐2,	
 CS5314	
 ©	
 BGRyder	
 	
 4	

3/15/16	

3	

Type Reconstruction -1

•  See handout for small expression language
definition
Types: τ → Int | Char | Bool … primitive PL types

 τ → Pointer(τ) | Tuple (τ,τ) | List(τ) | …constructed PL

 Record(label τ, label τ, ...) types

Expressions syntax: e → <intLiteral> | <listLiteral>|…
e → varId | (e)
e → e mod e | e + e | e and e | e or e | not e …

 Boolean/numerical operations
e → e eq e comparison operator

Types-­‐2,	
 CS5314	
 ©	
 BGRyder	
 	
 5	

Type Reconstruction -2

 e → deref e pointer operation
 e → fst e | snd e | pair(e,e) tuple operations
 e → hd e | tail e | cons (e,e) list operations
 where <intLiteral> → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
 <listLiteral> → nil, etc.
•  To perform type reconstruction, we need

assumptions for types of constants and then
define type deduction rules to type other
constructs

list constructor

tuple constructor

Types-­‐2,	
 CS5314	
 ©	
 BGRyder	
 	
 6	

3/15/16	

4	

Type Reconstruction - 3

•  Type rules define the types of results of legal
operations
Constants: c :τ |- c : τ given in type environment
Variables: y: τ |- y: τ e.g., in declarations

Arithmetic: |- e1: Int, |- e2: Int means mod op

 |- (e1 mod e2) : Int only applicable to
 integers

Equality: |- e1 : τ , |- e2 : τ can only compare

 |- (e1 eq e2) : Bool exprs of same type
 result is Boolean

Types-­‐2,	
 CS5314	
 ©	
 BGRyder	
 	
 7	

Type Reconstruction - 4
 Deref: |- e: Pointer(τ) can only apply deref operator
 |- deref(e) : τ to pointer type

•  Examples of use of rules
fst(1, 2.0) + snd(3.5, 5)

 τ1 = Tuple (Int, Real), τ2 = Tuple (Real, Int)
 fst(τ1) : Int, snd(τ2) : Int, therefore + operation is

well-typed
fst(1, 2.0) + hd(cons(5, nil))

 τ1 = Tuple(Int, Real), and we want: τ2 = List(Int)
 but how to get this?

Types-­‐2,	
 CS5314	
 ©	
 BGRyder	
 	
 8	

3/15/16	

5	

Type Reconstruction - 5
•  Need two more rules to type lists:

[Cons] |- e1: τ , |- e2: List(τ) (1)
 |- cons(e1, e2): List(τ)
 |- nil: List[_] (2) read this as List of any type

or instead use rules (1) and (3):
 |- e:τ (3)
 |- cons(e, nil) : List(τ)

means lists are made up of homogeneously
typed elements, but not necessarily of
primitive type e.g., List (Tuple(Int, Bool)) is legal

Types-­‐2,	
 CS5314	
 ©	
 BGRyder	
 	
 9	

10	

Typing Statements

•  Problem: what to do about typing statements?
 can use special type called void for correctly
typed statements

 |- y: τ , |- e: τ |- s1: void, s2:void |-b:bool,|- s:void
 |- y:=e : void |- s1; s2 :void |- if b then s:void
 Assignment Stmt sequence If stmt

3/15/16	

6	

Typing Functions -1

•  Want to write a truly polymorphic function and
be able to use it on arguments of different types

 length L = if L=nil then 0 else 1 + length (tl(L));

has type signature:
length: List(_) → Int
–  Examples from our small expression language

cons : τ → List[τ] → List [τ]
pair: σ * τ → Tuple(σ,τ)
fst: Tuple(σ,τ) → σ
if_then_else: bool * τ * τ → τ

Types-­‐2,	
 CS5314	
 ©	
 BGRyder	
 	
 11	

Typing Functions -2

•  Need for type variables to represent unknown
types during reconstruction
∀α. List(α) → int is type of SML length function
Type of deref: ∀β. Pointer(β) → β
Note: ∀α does not include type error, which is used in type

checking – more later on this

•  Need new inference rule for function application:
 |- e1: σ → τ, |- e2: σ

 |- e1(e2) : τ

Types-­‐2,	
 CS5314	
 ©	
 BGRyder	
 	
 12	

3/15/16	

7	

Typing Functions -3
•  Functions are usually typed in their curried form

incr(k,x) = x + k; plus(k), curried incr
incr: Tuple(int, int) → int plus: int → (int → int)
In curried form can use previous slide’s inference rule

•  What is a curried form of a function?
–  “A process of transforming a function that takes multiple

arguments into a function that takes one argument and
returns another function if any arguments are still
needed.” from https://wiki.haskell.org/Currying

•  Currying, an idea from functional programming in which
functions are first-class

•  Functions can be values assigned to a variable, passed as
parameters, applied to arguments (of the right type)

Types-­‐2,	
 CS5314	
 ©	
 BGRyder	
 	
 13	

Curried Form of a Function

•  Continuing with our example of incr
•  Incr(K,X) is function of type int x int à int
•  Incr(5,X) returns a value of X+5 (function application)
•  Plus(K) is of type int à (int à int)
•  Plus(5) returns a function that adds 5 to its argument;

we write this as lambda(X) = 5 + X (more later on this too)

•  Currying is a notion from functional programming in
which functions are first-class

•  Functions can be values assigned to a variable, passed as
parameters, applied to arguments (of the right type)

Types-­‐2,	
 CS5314	
 ©	
 BGRyder	
 	
 14	

3/15/16	

8	

Reconstructing Function Types -1
(ASU’86 ed, 6.6)

•  High-level view
1. Introduce new type variables for the function and

its parameters.
2. Setup equations that must hold for these variables

based on statements within the function (infer
compatible types from uses).

3. Solve these equations.
 a. If reach a type error, report it.
 b. If can get values for all type variables, then the
equations are consistent.

Types-­‐2,	
 CS5314	
 ©	
 BGRyder	
 	
 15	

Reconstructing Function Types - 2

c. Note: type value solution process involves using
unification to see if two type variables, currently
bound to specific types (represented by trees), can
be unified to the same type; implementation uses the
union-find algorithm

4. Add a new variable to the type environment to
represent this function
 δ = Analyze(fcn_body, E)

•  For an example, we will type the SML length
function for lists

Types-­‐2,	
 CS5314	
 ©	
 BGRyder	
 	
 16	

3/15/16	

9	

Analyze (e, E)
•  e is expression, E is type environment
•  if e is a type variable τ, return E[τ]
•  if e is an identifier id, return E[id]

–  with all ∀ variables renamed and ∀ dropped
•  e.g., ∀ α, α x List(α) --> List(α) is type of cons
•  e.g., ∀ α, bool x α x α --> α is type of if
•  e.g., ∀ α, α-->β becomes γ-->β, an arbitrary function

•  if e is function application, f(e1,…,ek)
–  let t1 - Analyze (e1, E)…
–  let s - Analyze (f, E)
–  introduce fresh type variable, δ
–  add equation (t1 x t2 x…x tk --> δ) = s and return δ

•  if e is a function definition, we need to follow the
reasoning in this example….

Types-­‐2,	
 CS5314	
 ©	
 BGRyder	
 	
 17	

Trace Algm Example -1

Analyze (lng (n) ≡ if (null n) then 0 else (1 + lng(tl n)), E);
Rule 1. Extend E[n] = γ , E[lng] = {γ → δ}
Rule 2. Analyze function body.

 Analyze (if ((null n), 0, (1+lng(tl n))), E).
 t1 = Analyze (e1, E) for e1 = (null n) fcn application
 t11 = Analyze (n) ≈ E[n] = {γ} identifier
 s11 = Analyze (null) ≈ E[null]= {list α → bool} identifier
 get new type variable β
 γ → β = list α → bool (1)
 return β as type of function application.

 Types-­‐2,	
 CS5314	
 ©	
 BGRyder	
 	
 18	

3/15/16	

10	

Trace Algm Example -2
Analyze (lng (n) ≡ if (null n) then 0 else (1 + lng(tl n)), E);
 t2 = Analyze(0,E) ≈ {int} constant
 t3 = Analyze (1+lng(tl n)) another fcn application

 t31=Analyze(1,E) ≈ {int}
 t32 = Analyze(lng(tl n), E)
 t321 = Analyze((tl n),E) analyze the arg
 t3211 = Analyze(n,E) ≈ {γ} identifier
 s3211 = Analyze(tl,E) ≈ {list µ → list µ}
 new type variable σ
 γ → σ = list µ → list µ (2)
 return σ as type of function application
 s321 = Analyze(lng,E) ≈ {γ → δ } from fcn signature
 new type variable Γ
 σ → Γ = γ → δ (3)
 return Γ as type of function application

Types-­‐2,	
 CS5314	
 ©	
 BGRyder	
 	
 19	

Trace Algm Example -3

 s31 = Analyze(+,E) ≈ {int * int → int}
 new type variable Δ
 int * Γ → Δ = int * int → int (4)
 return Δ
 s1 = Analyze(if,E) = {bool * ψ * ψ → ψ}
 new type variable ρ
 β * int * Δ → ρ = bool * ψ * ψ → ψ (5)
return ρ

Types-­‐2,	
 CS5314	
 ©	
 BGRyder	
 	
 20	

3/15/16	

11	

Trace Algm Example -4

Rule 3: solve equations using unification using most
general unifier

(1) γ → β = list α → bool
(2) γ → σ = list µ →list µ
(3) σ → Γ = γ → δ
(4) int * Γ → Δ = int * int → int
(5) β * int * Δ → ρ = bool * ψ * ψ → ψ
β = bool (from 1.)
γ = σ = list µ (from 2.,3.)
γ = list α (from 1.) (note: list α and list µ are same type)
δ  = Γ = Δ = int (from 3.,4.)
Finally we obtain:
lng: γ → δ = list µ → int

Types-­‐2,	
 CS5314	
 ©	
 BGRyder	
 	
 21	

Trace Algm Example -5

•  In ASU’86 p375
–  Is trace of our algorithm as lines in a table in the

same order as our slides
–  Looks like a bottom up traversal of a type tree,

typing the subtrees and then going upwards to type
higher subtrees

Types-­‐2,	
 CS5314	
 ©	
 BGRyder	
 	
 22	

