DANIEL BARTON

FLOWDROID: PRECISE CONTEXT, FLOW
FIELD, OBJECT-SENSITIVE AND LIFECYCLE
AWARE TAINT ANALYSIS FOR ANDROID APPS

PAPER
BACKGROUND

Authors: Steven Arzt,
Siegfried Rastloser,
Christian Fritz, Eric
Bodden, et al. (Damien
Octeau)

ACM SIGPLAN conterence
on Programming
Language Design and
Implementation (18%).

FLOWDROID OVERVIEW

Novel static taint-analysis system tailored for Android.
Analyzes both app byte-code and configuration files.
First context-, flow-, field-, object-sensitive taint analysis.

On-demand alias analysis to support context and
object sensitivities, based on Andromeda.

Use cases: secure Android apps, identity Android

Malware

ATTACK/THREAT MODEL

FlowDroid will detect tainted tlows regardless ot
malice.

Attacker supplies arbitrary byte-code.
Goal: Leak private data.

Attacker cannot circumvent Android security or use
side channels.

Conforms to standard malware.

ANDROID OVERVIEW

Android app != Java program
Multiple points of entry
Components
Activities - Screens
Services - Background operations
Content Providers - Database-like storage

Broadcast Receivers - Global event listeners

public class LeakageApp extends Activity{
private User user = null;
protected void onRestart (){
EditText usernameText =
(EditText) findViewById(R.id.username) ;
EditText passwordText =
(EditText)findViewById(R.id.pwdString) ;
String uname = usernameText.toString();
String pwd = passwordText.toString();
if ('uname.isEmpty () && !pwd.isEmpty())
this.user = new User (uname, pwd);

}
//Callback method in xml file

public void sendMessage(View view)({

if (user == null) return;

Password pwd = user.getpwd();

String pwdString = pwd.getPassword();

String obfPwd = "";

//must track primitives:

for(char ¢ : pwdString.toCharArray())
obfPwd += ¢ + "_"; //String concat.

String message = "User: " +

user.getName() + " | Pwd: " + obfPwd;
SmsManager sms = SmsManager.getDefault () ;
sms .sendTextMessage ("+44 020 7321 0905",

null, message, null, null);

ANDROID CONTROL/
DATA FLOW GRAPH

FLOWDROID MODEL OF APP LIFECYCLE

Assumes components can execute in an arbitrary sequential order.

Based on IFDS analysis, path insensitive.
Solution: Generate dummy main method.
Each path is possible, does not traverse all paths.

Callbacks only analyzed during execution windows in parent
component. Scans XML files, generates call graph per lifecycle

method.

Generates final call graph with dummy method as entry point.

FLOWDROID TAINT ANALYSIS

Combines forward taint analysis and on-demand backward aliasing.

: . a.qg.f g
void main() { 9 ,/ void foo(z) {

@ = new AQ);
b =a.q; "~

b.f L foo(a); <€:

sink(b.f);
}

TAINT ANALYSIS

Access paths
aNe
Configurable lengths (5 by default)
Includes all possible paths (x.f = x.t.g, x.t.h)
Transfer Function

Taints left side it the operands on right are tainted.

ON-DEMAND ALIAS ANALYSIS

When a tainted value is assigned to the heap, search
backward for aliases and taint them as well.

Perform forward taint propagation for each found alias.

Problem: Produces unrealizable paths along conflicting
contexts when used together (i.e. context insensitive
results).

Solution: Inject forward analysis context into
backward analysis.

Algorithm 1 Main loop of forward solver

- while ‘VOI‘/\’LI'SIFW' # @ do
pop (sp,d1) — (n,d2) off WorkListrw
switch (n)
case n is call statement:
if summary exists for call then
apply summary
else
map actual parameters to formal parameters
end if
case n is exit statement:
install summary (s,,d;) — (n,d2)
map formal parameters to actual parameters
map return value back to caller’s context
case n is assignment lhs = rhs:
ds := replace rhs by lhs in d2
insert (sp,d1) — (n,ds) into WorkListpw
extend path-edges via the propagate-method of the classical
IFDS algorithm
. end while

Algorithm 2 Main loop of backward solver

1: while WorkList zw # ? do
2 pop (8p,d1) — (n,d2) off WorkListpw
3 switch (n)
4 case n 1s call statement:
5: if summary exists for call then
6: apply summary
7: else
8 map actual parameters to formal parameters
9 end if
0 extend path-edges via the propagate-method of the classi-

cal IFDS algorithm

case n is method’s first statement:

install summary (s,,d;) — (n,d2)

insert (s,,d;) — (n,d2) into WorkListgw

do not extend path-edges via the propagate-method of the

classical IFDS algorithm, killing current taint d»

case n is assignment lhs = rhs:

d3 := replace lhs by rhs in d2

insert (sp,d1) — (n,ds) into WorkListrw

extend path-edges via the propagate-method of the classi-

cal IFDS algorithm
19: end while

ON-DEMAND ALIAS ANALYSIS (CONT.)

Problem: Forward/backward combination lead to flow
insensitive results.

Solution: Augment access path with statement that
spawns the backward alias, the activation statement.

Activation statements are used to look up call trees in
which they occur.

WHY PRESERVE ALL THESE
SENSITIVITIES?

Model litecycle accurately to reduce false negatives.
Field sensitivity allows for reduced false positives.

Object sensitivity to automatically dismiss talse
positives (i.e. when different objects hit the same

code).

Context sensitivity to eliminate unrealized paths, and
reduce false positives.

FLOWDROID ARCHITECTURE

Unzip .akp

Search byte-code and layout XML files for lite cycle
methods, callbacks, sources, and sinks.

Generate dummy main method from list of lite cycle
methods and call backs.

Generate call graph and inter-procedural control tlow

graph (ICFG).

Perform taint analysis on sources in ICFG.

LIMITATIONS

Resolves retlective calls only if their arguments are
string constants.

Could miss callbacks (nhative methods that are not
recognized as callbacks).

Does not account for multiple threads.

-VALUATION

Addressed 4 research questions:

How does FlowDroid compare to commercial taint-analysis
tools for android in terms of precision and real?

Can FlowDroid find all privacy leaks in InsecureBank, and app
specifically designed by others to challenge vulnerability
detection tools for android, and what is its performance?

Can FlowDroid find leaks in real world apps and how tast?

How well does FlowDroid perform when analyzing Java
programs?

- XPERIMENTAL SETUP

DroidBench
39 hand-crafted Android apps.

Crafted to challenge static analysis problems
(different sensitivities, etc.) and Android specitic
challenges (modeling litecycle).

First Android specific benchmark suite.

Arrays and Lists

ArrayAccessl
ArrayAccess2
ListAccessl .
Callbacks
AnonymousClass]
Buttonl
Button2
LocationLeak]
LocationLeak?2
MethodOverridel * 3

Field and Object Sensitivity
FieldSensitivity]
FieldSensitivity2
FieldSensitivity3
FieldSensitivity4
InheritedObjects1
ObjectSensitivity |
ObjectSensitivity2 .
Inter-App Communication
IntentSink1 * .
IntentSink2 - X
ActivityCommunication 1 - A

Lifecycle

BroadcastReceiverLifecyclel &
ActivityLifecyclel
ActivityLifecycle2
ActivityLifecycle3
ActivityLifecycle4
ServiceLifecyclel
General Java
Loopl *
Loop2
SourceCodeSpecificl - :
StaticInitialization| A
UnreachableCode

Miscellaneous Android-Specific

PrivateDataleak|

PrivateDatal.eak2 * *
DirectLeak] C .
InactiveActivity . N
LogNoLeak

Sum, Precision and Recall
® , higher is better 14 17
« , lower is better - 4
, lower is better 14 11
Precision p = ®/(® 4 *) 74% 81%
Recallr = ®/(® 4 O) 50% 61%
F-measure 2pr /(p + 1) 0.60 0.70

-VALUATION RESULTS

Q2: 31 seconds to complete with a stock laptop, finds
all vulnerabilities without talse positives or talse
negatives.

Q3: ran FlowDroid on 500 Google Play apps. Nothing
malicious. Ran again on 1000 known malware.
Averaged 2 data leaks.

Q4: ran FlowDroid on Stanford SecuriBench (J2EE
benchmark).

Test-case group
Aliasing

Arrays

Basic

Collections
Datastructure

Factory

Inter
Pred

Reflection
Sanitizer
Session

Strong Updates
Sum

117/121

9

CONCLUSIONS

FlowDroid - Novel and highly precise static analysis
tool for Android apps.

Accurately models Android litecycle and callbacks.

On-demand taint analysis algorithms allow for strong
sensitivities with acceptable performance.

DroidBench - Benchmark suite ot Android apps for
security benchmarking.

