
Certification of
Programs for Secure

Information Flow
Dorothy Denning and Peter Denning

What and why … certification?

 An indication whether all possible information flows in the program is in
accordance with the information flow policy

 Helps in determining the proof of correctness of the program

 Reduces the need for checking at run-time

 … but does not completely remove the need for run-time checking

More on … Information flow policy

 Information flow policy for a program is a combination of:

 Security classes

 Permissible flows between these classes

 Way to bind program storage objects to these classes

 A security class is just a security ‘rating’. It contains a set of program storage
objects.

 A storage object is just anything in a program that hold values ~ variable,
array, constant or a file.

 The binding is done (in this case) at the beginning of the program.

Information Flow

 Information is said to flow x y if the information in x is transferred so as
to derive the value in y.

 The program is said to specify a flow x y if there is any flow in it that
could lead to a transfer of information from x to y.

 Types of flow:

 Explicit flows happen when the transfer is regardless of the value of x

 Examples are normal variable assignment, read values from file etc

 Implicit flow is an indirect flow of information from x to y through an intermediary

Enter Lattice Theory

 A flow policy is represented by the lattice <S , >

 S is the set of security classes (given)

 represents the set of allowed flows between classes.

 x y indicates that a flow information from object x to object y is
permitted under the given policy.

 <S , > is a lattice because it is:

 Reflexive

 Transitive

 Has a Least Upper Bound and Greatest Lower Bound

Lattice Theory in Flow Policy

 Let + and x denote the LUB and GLB of a pair of security classes in the flow
policy.

More
Lattice Theory in Flow Policy

 L denotes the greatest lower bound for all the classes

 All the unnamed constants belong to this class

 H denotes the class that is the greatest lower bound of all the classes.

 In xi y (where i = 1,2 … m), the LUB can be thought as the common security
class through which classes x1, x2 …. xm flow through.

 In y xi (where i = 1,2 … n), the GLB can be thought as the common security
class through which classes x1, x2 …. xm flow from.

 Help keep track of the origin and destination of flows.

Certification Mechanism

 The paper tries to certify that

 Determines whether the program specifies any possible invalid flows.

 The mechanism is presented in the form of certification semantics.

 Transitive nature of the flow implies that sequence of secure direct flows are
secure.

 In particular for a pair of objects, we need only to check their LUB or GLB.

The
CERTIFIED system variable

 The paper keeps track of a boolean variable called CERTIFIED.

 This variable is initially set to true.

 During the analysis of the program, if the mechanism encounters an invalid
flow specification, it sets CERTIFIED to false and returns it.

 This is based on the security condition:

Object Security Declarations

Sample program and certification

Certification Semantics

Parse of the syntax tree

Certifying General Control Structures

 The steps for certifying statements like repeat, for and case:

1. Basic blocks are found out

2. A Control-flow graph is constructed with transitions

3. Expression ei selects the successor for block bi.

4. The Immediate Forward Dominator IFD(bi) is determined for each block bi.

 It is the block closest to b amongst all the blocks that lie on every path from b to the exit

5. Find Bi

 It is the set of all blocks between bi and IFD(bi).

6. Security class Bi for a block bi is the GLB of all the blocks in Bi.

7. Check whether ei Bi

 We don’t really need goto, do we?

Certifying Data Structures

 Arrays:

 Assumption: Security classes of all the elements in the array is the same.

 When an array reference is processed, classes of subscript and array identifier are
joined together.

 If the array is being assigned to, need to check <array ref> = <ident>

 Records: A record is structure comprising of m fields, i.e. till r.ym

 Copying a record r from file f is secure only if f x r

 Copying a record r into file f is secure only if f + r

Procedure calls

 Let q be a procedure with input arguments x1, x2 …. xm and output parameters
y1, y2 …. yn.

 call q(x1, x2 …. xm ; y1, y2 …. yn) is secure only when:

 The call to procedure q from P is secure.

 The mappings between the corresponding variables is secure

 If the call occurs inside a series of conditional expressions e1, e2 …. ek and c1,
c2 …. cl are all the objects that q specifies, then need to verify:

 Problem with handling arbitrary classes

Exception Handling

 Invalid flows can be caused by traps (exceptions).

 Can be avoided by not prohibiting all non-handled traps.

Certifying the certifier – Basis step
 Theorem: A program is certified true only if it is secure.

 Proof through induction

 There are three atomic statements for the base step:

 <var> := exp (secure based on rule 20)

 input <inlist> from <file> (secure based on rule 23)

 output <inlist> to <file> (secure based on rule 26)

Certifying the certifier – Induction step

 Induction step: Assuming that the program is certified and secure up to
statement J.

 Need to certify for:

 begin <stlist> end

 if <exp> then <stmt>1 [else <stmt>2]

 while <exp> do <stmt>1

Limitations
 This paper can’t handle leak of secure information through covert channels.

 Not a big issue, because work by Lipner has shown that guarding information leak
through covert channels might be impossible.

 This paper does guard against information leak through legitimate channels
and storage channels.

Applications

 Confinement problem:

 A service is totally confined if user information can never be stored at all.

 A service is selectively confined if confidential user information can never be
stored.

 This paper can verify varying levels of these confinements.

 State variables

 Data Bank Confidentiality

 DQL statements can be verified through the LUB of all columns.

 DML statements cam be verified through the GLB of all the columns.

	Certification of Programs for Secure Information Flow
	What and why … certification?
	More on … Information flow policy
	�Information Flow
	Enter Lattice Theory
	�Lattice Theory in Flow Policy
	More�Lattice Theory in Flow Policy
	Certification Mechanism
	The �CERTIFIED system variable
	�Object Security Declarations
	Sample program and certification
	Certification Semantics
	Parse of the syntax tree
	Certifying General Control Structures
	Certifying Data Structures
	Procedure calls
	Exception Handling
	Certifying the certifier – Basis step
	Certifying the certifier – Induction step
	Limitations
	Applications
	Slide Number 22

