
Certification of
Programs for Secure

Information Flow
Dorothy Denning and Peter Denning

What and why … certification?

 An indication whether all possible information flows in the program is in
accordance with the information flow policy

 Helps in determining the proof of correctness of the program

 Reduces the need for checking at run-time

 … but does not completely remove the need for run-time checking

More on … Information flow policy

 Information flow policy for a program is a combination of:

 Security classes

 Permissible flows between these classes

 Way to bind program storage objects to these classes

 A security class is just a security ‘rating’. It contains a set of program storage
objects.

 A storage object is just anything in a program that hold values ~ variable,
array, constant or a file.

 The binding is done (in this case) at the beginning of the program.

Information Flow

 Information is said to flow x y if the information in x is transferred so as
to derive the value in y.

 The program is said to specify a flow x y if there is any flow in it that
could lead to a transfer of information from x to y.

 Types of flow:

 Explicit flows happen when the transfer is regardless of the value of x

 Examples are normal variable assignment, read values from file etc

 Implicit flow is an indirect flow of information from x to y through an intermediary

Enter Lattice Theory

 A flow policy is represented by the lattice <S , >

 S is the set of security classes (given)

 represents the set of allowed flows between classes.

 x y indicates that a flow information from object x to object y is
permitted under the given policy.

 <S , > is a lattice because it is:

 Reflexive

 Transitive

 Has a Least Upper Bound and Greatest Lower Bound

Lattice Theory in Flow Policy

 Let + and x denote the LUB and GLB of a pair of security classes in the flow
policy.

More
Lattice Theory in Flow Policy

 L denotes the greatest lower bound for all the classes

 All the unnamed constants belong to this class

 H denotes the class that is the greatest lower bound of all the classes.

 In xi y (where i = 1,2 … m), the LUB can be thought as the common security
class through which classes x1, x2 …. xm flow through.

 In y xi (where i = 1,2 … n), the GLB can be thought as the common security
class through which classes x1, x2 …. xm flow from.

 Help keep track of the origin and destination of flows.

Certification Mechanism

 The paper tries to certify that

 Determines whether the program specifies any possible invalid flows.

 The mechanism is presented in the form of certification semantics.

 Transitive nature of the flow implies that sequence of secure direct flows are
secure.

 In particular for a pair of objects, we need only to check their LUB or GLB.

The
CERTIFIED system variable

 The paper keeps track of a boolean variable called CERTIFIED.

 This variable is initially set to true.

 During the analysis of the program, if the mechanism encounters an invalid
flow specification, it sets CERTIFIED to false and returns it.

 This is based on the security condition:

Object Security Declarations

Sample program and certification

Certification Semantics

Parse of the syntax tree

Certifying General Control Structures

 The steps for certifying statements like repeat, for and case:

1. Basic blocks are found out

2. A Control-flow graph is constructed with transitions

3. Expression ei selects the successor for block bi.

4. The Immediate Forward Dominator IFD(bi) is determined for each block bi.

 It is the block closest to b amongst all the blocks that lie on every path from b to the exit

5. Find Bi

 It is the set of all blocks between bi and IFD(bi).

6. Security class Bi for a block bi is the GLB of all the blocks in Bi.

7. Check whether ei Bi

 We don’t really need goto, do we?

Certifying Data Structures

 Arrays:

 Assumption: Security classes of all the elements in the array is the same.

 When an array reference is processed, classes of subscript and array identifier are
joined together.

 If the array is being assigned to, need to check <array ref> = <ident>

 Records: A record is structure comprising of m fields, i.e. till r.ym

 Copying a record r from file f is secure only if f x r

 Copying a record r into file f is secure only if f + r

Procedure calls

 Let q be a procedure with input arguments x1, x2 …. xm and output parameters
y1, y2 …. yn.

 call q(x1, x2 …. xm ; y1, y2 …. yn) is secure only when:

 The call to procedure q from P is secure.

 The mappings between the corresponding variables is secure

 If the call occurs inside a series of conditional expressions e1, e2 …. ek and c1,
c2 …. cl are all the objects that q specifies, then need to verify:

 Problem with handling arbitrary classes

Exception Handling

 Invalid flows can be caused by traps (exceptions).

 Can be avoided by not prohibiting all non-handled traps.

Certifying the certifier – Basis step
 Theorem: A program is certified true only if it is secure.

 Proof through induction

 There are three atomic statements for the base step:

 <var> := exp (secure based on rule 20)

 input <inlist> from <file> (secure based on rule 23)

 output <inlist> to <file> (secure based on rule 26)

Certifying the certifier – Induction step

 Induction step: Assuming that the program is certified and secure up to
statement J.

 Need to certify for:

 begin <stlist> end

 if <exp> then <stmt>1 [else <stmt>2]

 while <exp> do <stmt>1

Limitations
 This paper can’t handle leak of secure information through covert channels.

 Not a big issue, because work by Lipner has shown that guarding information leak
through covert channels might be impossible.

 This paper does guard against information leak through legitimate channels
and storage channels.

Applications

 Confinement problem:

 A service is totally confined if user information can never be stored at all.

 A service is selectively confined if confidential user information can never be
stored.

 This paper can verify varying levels of these confinements.

 State variables

 Data Bank Confidentiality

 DQL statements can be verified through the LUB of all columns.

 DML statements cam be verified through the GLB of all the columns.

	Certification of Programs for Secure Information Flow
	What and why … certification?
	More on … Information flow policy
	�Information Flow
	Enter Lattice Theory
	�Lattice Theory in Flow Policy
	More�Lattice Theory in Flow Policy
	Certification Mechanism
	The �CERTIFIED system variable
	�Object Security Declarations
	Sample program and certification
	Certification Semantics
	Parse of the syntax tree
	Certifying General Control Structures
	Certifying Data Structures
	Procedure calls
	Exception Handling
	Certifying the certifier – Basis step
	Certifying the certifier – Induction step
	Limitations
	Applications
	Slide Number 22

