Certification of
Programs for Secure
Information Flow

Dorothy Denning and Peter Denning

What and why ... certification?

» An indication whether all possible information flows in the program is in
accordance with the information flow policy

» Helps in determining the proof of correctness of the program
» Reduces the need for checking at run-time

» ... but does not completely remove the need for run-time checking

More on ... Information flow policy

» Information flow policy for a program is a combination of:
» Security classes
» Permissible flows between these classes

» Way to bind program storage objects to these classes

» Asecurity class is just a security ‘rating’. It contains a set of program storage
objects.

» Astorage object is just anything in a program that hold values ~ variable,
array, constant or a file.

» The binding is done (in this case) at the beginning of the program.

Information Flow

» Information is said to flow x= y if the information in x is transferred so as
to derive the value inYy.

» The program is said to specify a flow x=>y if there is any flow in it that
could lead to a transfer of information from x toy.

» Types of flow:

» Explicit flows happen when the transfer is regardless of the value of x

» Examples are normal variable assignment, read values from file etc

» Implicit flow is an indirect flow of information from x to y through an intermediary

Enter Lattice Theory

» Aflow policy is represented by the lattice <S, — >
» S is the set of security classes (given)

» ~ represents the set of allowed flows between classes.

» X — YV indicates that a flow information from object x to objecty is
permitted under the given policy.

» <S5, — > s a lattice because it is:
» Reflexive

» Transitive

» Has a Least Upper Bound and Greatest Lower Bound

Lattice Theory in Flow Policy

» Let + and x denote the LUB and GLB of a pair of security classes in the flow
policy.

11
S = {000,001, ..., 111} / l \

A — B iff OR(A, B) = B 1

10 101 011
A ® B = OR(A,B) T><o ><T
A ® B = AND(A,B) 100 0 001

1
L =000,H =111 ‘]’

More
Lattice Theory in Flow Policy

» L denotes the greatest lower bound for all the classes

» All the unnamed constants belong to this class

» H denotes the class that is the greatest lower bound of all the classes.

» Inx,—Yy (wherei=1,2 .. m), the LUB can be thought as the common security
class through which classes x,, X, X, flow through.

» Iny—X; (wherei=1,2..n), the GLB can be thought as the common security
class through which classes xy, X, X, flow from.

» Help keep track of the origin and destination of flows.

Certification Mechanism

The paper tries to certify that x =y is specified by p only if x — y.
Determines whether the program specifies any possible invalid flows.

The mechanism is presented in the form of certification semantics.

vV v v Vv

Transitive nature of the flow implies that sequence of secure direct flows are
secure.

» In particular for a pair of objects, we need only to check their LUB or GLB.

The
CERTIFIED system variable

» The paper keeps track of a boolean variable called CERTIFIED.
» This variable is initially set to true.

» During the analysis of the program, if the mechanism encounters an invalid
flow specification, it sets CERTIFIED to false and returns it.

» This is based on the security condition:

x =y is specified by p only if x>y,

Object Security Declarations

begin
i,n: integer security class L;
flag: Boolean security class L;
f1,12: file security class L;
x,sum: integer security class H;
f3,f4: file security class H;

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25

Sample program and certification

begin
=1
n=0;
sum = 0;
while i < 100 do
begin
input flag from f1;
output flag to f2;
input x from f3;
if flag then
begin
n=n+1,;
sum = sum + x
end;
d=i+1
end;

output n, sum, sum/n to f4
end
end

1—i(L->1L)
0—-n(L— L)
Q-—>s_um(L—>H)

{1 flag (L— L)
flag — f2 (L~ L)
B—x(H— H)

Certification Semantics

Syntax rule Certification semantics

Declarations
1 {type) 1= integer | Boolean | file
2 {idlise) = {ident) | {idlist), (ident} . .
3 {decly 1= (idlist) : {type) security class far each (ident} in {idlist} associate {security elass} with {ident} in the symbaol table entry
{security class} for {ident)
4 {declist) == (decl) | (declisty; (decl)

Expressions
5 {addop) =+ | = |
[{mulup} —°|!|.|'"\

{var) == {jdent}

{file} := {ident)

{factor} = (var}

{factor} := L (the least class)
{factor} := (exp}

{factor) := {factor),

11 {factar) o= {cons}
12 {factar} 2= ({exph)
13 {factor) 1= ~ (factor),

14 {rerm} - {factor} {term} := {factor)
15 {term} ::= {term}, {mulop} {factor) {term} := {term}, & (factor}
16 {ac:p) = {term} {aexp} = (term}
17 {aexp} ::= {(aexp), {addop} {term} acxp) = {acxpl @ (lerm)
18 {exp} 1= {aexp) {exp E = {aexp
19 {exp) 1= (aexp), (relop) {aexpls {ﬂ} = {aex E.h B (aexpls
Assignment
20 {srmty o= fvary o= {exp) {stmi} := {var}

if not ({exp) — (vari

then CERTIFIED = false

Input
21 dinlist) 2= {var} {inlist} := {var}

22 (inlist) 1= {inlist),, {var}

tinlisty := (inlist}, & {var)
23 {stmt} *= input {inlist} from {file)

{stmt} = {inlist}
if not ({filed — {inlist)
then CERTIFIED = false

Output
24 (outlist) 1= {exp) {outlist) = {exp}
25 {outlisty == {outlist},, {exp} {uuu ist) = (outlist), & {exp)
26 {stmt) = owiput {outlist) 1o {file) {stmty = {file)
il ot {{owilisty — ﬁl!)
then CERTIFIED := false
Compound

27 {stlist} = {stmt}

28 (stlist) <= (stlist),; (stmt}

29 {stmt} :*= begin {stlist} end

Selection

30 {stmt} = if {exp) them {stmt},
[else (stmi);]

Tteration
31 {stmt} := while {exp} do {stmt},

Program

{stlist} = (stmt}
{stllsl - stlu o & {stmt}

stent) = (sthi

{simty = (stmid, [E {stmi)y]
i ot ({exp) — (stmt)}
then CERTIFIED := false

{stmt} = {simth
il mot {{exp} — {stmi})
then TIFTED := false

if CERTIFIED then certify {prog} else report security violation. (CERTIFIED is
initialized to troe and set to false if a violation is detected)

32 (prog} 2= begin (declisth; {stmt) end

Parse of the syntax tree

Certification tree of an assignment statement,

i Eﬁ —“E?\

{stmt}
TNl I e LU
{var} (¢) 2. {exp) (o @ b)
{ident} (c} {acxp) (2 @ b)
€ {aexp} (&) {addop) {term} (b)

l | ||

{term} (a) + {factor} (&)

{term) (g) {mulop) {tactory (L} {var) (b))

{factor) (a) » {cons) (L) {H?M} (b)
| |

{var} (a) 2 b

(ident} (@)

Certifying General Control Structures

» The steps for certifying statements like repeat, for and case:
1. Basic blocks are found out
2. A Control-flow graph is constructed with transitions

3. Expression e; selects the successor for block b;

4. The Immediate Forward Dominator IFD(b;) is determined for each block b;.

» Itis the block closest to b amongst all the blocks that lie on every path from b to the exit
5. Find B;

» Itis the set of all blocks between b; and IFD(b;).
6. Security class B; for a block b, is the GLB of all the blocks in B,.

7. Check whether e; — B;

» We don’t really need goto, do we?

Certifying Data Structures

» Arrays:

» Assumption: Security classes of all the elements in the array is the same.

» When an array reference is processed, classes of subscript and array identifier are
joined together.

» If the array is being assigned to, need to check <array ref> = <ident>

» Records: A record is structure comprising of m fields, i.e. till r.y_
» Copying a record r from file f is secure only if f —» X r

» Copying a record r into file fis secure only if f —+7r

Procedure calls

» Let q be a procedure with input arguments X, X, X, and output parameters
Y1, Y2 or Y

» callg(xy, X5 ... X5 Y1s Yo o= Y,) IS S€CUrE Oonly when:
» The call to procedure q from P is secure.

» The mappings between the corresponding variables is secure

» If the call occurs inside a series of conditional expressions e,, e, e, and c,
C,.... c;are all the objects that g specifies, then need to verify:

6@ Qeg—e® g

» Problem with handling arbitrary classes

Exception Handling

» Invalid flows can be caused by traps (exceptions).

p: begin
i: integer security class L;
e: Boolean security class L;
f: file security class L;
x, sum: integer security class H;
begin
sum = 0;
i =0
e = true;
while ¢ do
begin
sum = sum + x;
=i+ 1;
output i to f
end
end
end

» Can be avoided by not prohibiting all non-handled traps.

Certifying the certifier - Basis step

» Theorem: A program is certified true only if it is secure.
» Proof through induction

» There are three atomic statements for the base step:
> <var> = exp (secure based on rule 20)
» input <inlist> from <file> (secure based on rule 23)

» output <inlist> to <file> (secure based on rule 26)

Certifying the certifier - Induction step

» Induction step: Assuming that the program is certified and secure up to
statement J.

» Need to certify for:
» begin <stlist> end
» if <exp> then <stmt>, [else <stmt>,]

» while <exp> do <stmt>,;

Limitations

» This paper can’t handle leak of secure information through covert channels.

» Not a big issue, because work by Lipner has shown that guarding information leak
through covert channels might be impossible.

» This paper does guard against information leak through legitimate channels
and storage channels.

Applications

» Confinement problem:
» Aservice is totally confined if user information can never be stored at all.

» Aservice is selectively confined if confidential user information can never be
stored.

» This paper can verify varying levels of these confinements.
» State variables
» Data Bank Confidentiality
» DQL statements can be verified through the LUB of all columns.

» DML statements cam be verified through the GLB of all the columns.

	Certification of Programs for Secure Information Flow
	What and why … certification?
	More on … Information flow policy
	�Information Flow
	Enter Lattice Theory
	�Lattice Theory in Flow Policy
	More�Lattice Theory in Flow Policy
	Certification Mechanism
	The �CERTIFIED system variable
	�Object Security Declarations
	Sample program and certification
	Certification Semantics
	Parse of the syntax tree
	Certifying General Control Structures
	Certifying Data Structures
	Procedure calls
	Exception Handling
	Certifying the certifier – Basis step
	Certifying the certifier – Induction step
	Limitations
	Applications
	Slide Number 22

