
Apposcopy: Semantics-Based
Detection of Android Malware

through Static Analysis
Yu Feng, Saswat Anand, Isil Dillig and Alex Aiken

FSE 2014

Presented by ke tian

1

Outlines:

What is the problem?
identify Android malware

What is the solution/contribution?
signature based specification with graph

assistant(ICCG)
How efficient is the solution?

low false positive+ false negative
2

Android attacks

3

Repackaging

86.0% of # apps

in Genome
Update attack

[1]Dissecting Android Malware: Characterization and Evolution

Trojan

Stealing/sniffing

http://www.csc.ncsu.edu/faculty/jiang/pubs/OAKLAND12.pdf

Android Components

4
http://mithileshjoshi.blogspot.com/2015/06/what-is-android-application-components.html

5

Communications in Android

Deterministic

ICCG (inter-component call graph)

6

Receiver

Service

Activity

intent

System event

Node: component name

Edge: 1)component A
--(start)-- >
component B
2)system events

In App

7

Signature Listen to the events

receiver

System invokes r when e occurs
Data flow query

Source(ID) ->
Sink(Internet)

8

ICCG Signature
Spec Language

Static Analysis

Taint Analysis

9

Malware Spec Language

Purpose: use a languages/semantics to describe the
app’s inner-property/behavior

Component type predicates: service(c)
Predicate icc: icc*(p,q) <example>
Predicate calls: calls(c,m)
Predicate flows: flow(p, so, q, si)

10

Initialize an ICC through an intent

Data type

MainAct MsgAct

intent
SEND

Text/plain

Q: Explicit intent or implicit intent?

11

Static Analysis

Call graph construction
conventional approach
pointer analysis (heap object)

Data flow Analysis for intents <example>
intent analysis (intent filters)
transfer functions (complex algebra)

Construct the ICCG
define construction rules (algebra)

12

{action.SEND}

13

Taint Analysis
Source anno

Sink anno

If para S is
tainted,
Then,

@return is
tainted

14

Taint Analysis

(complex algebra)

15

Taint Analysis

(O2)
(O1)

(O3)

$get…Id (y) ->
O2 -> O3

-> m -> n -> v

Tainted(v, $get...Id)
Sink(send…, !send…)

16

Results

17

Results

FN = A belongs to family F
but Apposcopy cannot
detect

FP = A does not belong to
family F but Apposcopy
wrongly identifies

Q&A

18

Why semantic-based?

Can apposcopy identify malicious/benign behavior?

01010010010

behavior

Bytecode
signature

behavior
signature

No

Signature resistance?
Code reordering/code injection/code rewriting

