
Presented by Dong Chen

Omer Tripp, Marco Pistoia, Stephen Fink, Manu Sridharan, Omri Weisman

 Published in PLDI 2009

TAJ: Effective Taint Analysis of
Web Applications

Recall: Taint Analysis

Source

Sink

Sanitizer

Outline

´ Background
´ Motivation
´ Approach
´ Evaluation
´ Conclusion

Outline

´ Background
´ Motivation
´ Approach
´ Evaluation
´ Conclusion

OWASP Top Ten Security
Vulnerabilities

http://www.owasp.org

Existing solutions

´ Type systems:
´ Complex, conservative, require

code annotations

´ Slicing:
´ Has not been shown to scale to

large applications

Outline

´ Background
´ Motivation
´ Approach
´ Evaluation
´ Conclusion

Motivating Example

Motivating Example

Outline

´ Background
´ Motivation
´ Approach
´ Evaluation
´ Conclusion

TAJ

´  Consists of 2 stages:
´  Pointer analysis

´  Slicing algorithm

´  Effective reports

´  Efficient behavior under restricted budget

Pointer analysis and call-
graph construction
´ Pointer analysis is a variant of Andersen’s

analysis
´ Custom context-sensitivity policy:

´ Unlimited-depth object sensitivity for
Java collections

´ One level of call-string context for
factory methods

´ One level of call-string context for
taint APIs

´ Pointer analysis of TAJ is field sensitive

Hybrid thin slicing

st4

l2

l2

st4

l4

st2 st1

l5 l3

l1

st3

st5

c3

c4

sk1

r3

r7

r8

r4

c2

s1

s2

r2

c1

c5

r5

r1

sk2

sti
Store
statement

li
Load
statement

ski
Sink-dispatch
statement

Hybrid SDG

Slice in the
no-heap

SDG

Store-to-load
direct edge
Load-to-store or load-
to-sink summary edge
No-heap SDG
edge

ci Call statement

ri Return statement

si Other statement

Direct edges: computed based on preliminary pointer analysis
Summary edges: computed using no-heap SDG

Eliminating Redundant Reports

Example:
1.  Use p1 and p2
2.  Use p3 and p4

Priority-driven Call-graph
Construction

•  Priority queue used to govern call-graph growth

•  Sources are assigned priority 0, others maxNodes

•  Recursively, for each “neighbor” t of node n:
pr (t) = min{(pr (n) + 1), pr (t)}

•  Propagation process runs to a fixed point

•  “Locality-of-taint” principle

Outline

´ Background
´ Motivation
´ Approach
´ Evaluation
´ Conclusion

Evaluation
•  Performance

Evaluation
•  Accuracy

Outline

´ Background
´ Motivation
´ Approach
´ Evaluation
´ Conclusion

Conclusion

•  Effective solution for taint analysis of
Web applications based on pointer
analysis and hybrid thin slicing

•  Efficient strategies for analysis under
limited budget

Questions

