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Recall: Taint Analysis 
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OWASP Top Ten Security 
Vulnerabilities  

http://www.owasp.org  
 



Existing solutions 

´ Type systems: 
´ Complex, conservative, require 

code annotations 

´ Slicing: 
´ Has not been shown to scale to 

large applications 
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TAJ 

´  Consists of 2 stages: 
´  Pointer analysis 

´  Slicing algorithm 

´  Effective reports 

´  Efficient behavior under restricted budget 



Pointer analysis and call-
graph construction 
´ Pointer analysis is a variant of Andersen’s 

analysis 
´ Custom context-sensitivity policy: 

´ Unlimited-depth object sensitivity for 
Java collections 

´ One level of call-string context for 
factory methods 

´ One level of call-string context for 
taint APIs 

´ Pointer analysis of TAJ is field sensitive 



Hybrid thin slicing 
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Store 
statement 

li 
Load 
statement 
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Sink-dispatch 
statement 

Hybrid SDG 

Slice in the 
no-heap 

SDG 

Store-to-load 
direct edge 
Load-to-store or load- 
to-sink summary edge 
No-heap SDG 
edge 

ci Call statement 

ri Return statement 

si Other statement 

Direct  edges:        computed based on preliminary pointer analysis 
Summary edges:   computed using no-heap SDG  



Eliminating Redundant Reports 

Example: 
1.  Use p1 and p2 
2.  Use p3 and p4 



Priority-driven Call-graph 
Construction 

•  Priority queue used to govern call-graph growth 

•  Sources are assigned priority 0, others maxNodes 

•  Recursively, for each “neighbor” t of node n: 
pr (t) = min{(pr (n) + 1), pr (t)}  

•  Propagation process runs to a fixed point 

•  “Locality-of-taint” principle 
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Evaluation 
•  Performance 



Evaluation 
•  Accuracy 
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Conclusion 

•  Effective solution for taint analysis of 
Web applications based on pointer 
analysis and hybrid thin slicing 

•  Efficient strategies for analysis under 
limited budget 



Questions 


