
TaintDroid: An Information-Flow
Tracking System for Realtime Privacy

Monitoring on Smartphones
OSDI 2010

William Enck Peter Gilbert Byung-Gon Chun
Landon P. Cox Jaeyeon Jung Patrick McDaniel

Anmol N. Sheth

November 3, 2015

Presented by Markus
1



Motivation

I Android permissions
are coarse

I Apps are composed of
many parts

I “Who is using my GPS
data?”

I Can sensitive data reach
the outside world?

2

In general, the privacy permissions on Android applications are
fairly coarse grained.
When a user wants to install a third-party application, they
must accept the requested permissions of the application
Here we see the ever popular Brightest Flashlight Ever Free
Here, the application requests, amongst other things, the user’s
location
Now a typical android application is composed of many parts,
for example, it may use external advertising libraries
As a result, it can be hard to see which part of the application is
using the permission
To continue this example, we don’t know if the flashlight is using
our GPS to produce light or if some other part of the application
is using our data
So, we would like to see if any of our sensitive information, such
as our GPS location, can reach the outside world
This is the basic goal of a taint analysis



Motivation

I Android permissions
are coarse

I Apps are composed of
many parts

I “Who is using my GPS
data?”

I Can sensitive data reach
the outside world?

2

In general, the privacy permissions on Android applications are
fairly coarse grained.
When a user wants to install a third-party application, they
must accept the requested permissions of the application
Here we see the ever popular Brightest Flashlight Ever Free
Here, the application requests, amongst other things, the user’s
location
Now a typical android application is composed of many parts,
for example, it may use external advertising libraries
As a result, it can be hard to see which part of the application is
using the permission
To continue this example, we don’t know if the flashlight is using
our GPS to produce light or if some other part of the application
is using our data
So, we would like to see if any of our sensitive information, such
as our GPS location, can reach the outside world
This is the basic goal of a taint analysis



Motivation

I Android permissions
are coarse

I Apps are composed of
many parts

I “Who is using my GPS
data?”

I Can sensitive data reach
the outside world?

2

In general, the privacy permissions on Android applications are
fairly coarse grained.
When a user wants to install a third-party application, they
must accept the requested permissions of the application
Here we see the ever popular Brightest Flashlight Ever Free
Here, the application requests, amongst other things, the user’s
location
Now a typical android application is composed of many parts,
for example, it may use external advertising libraries
As a result, it can be hard to see which part of the application is
using the permission
To continue this example, we don’t know if the flashlight is using
our GPS to produce light or if some other part of the application
is using our data
So, we would like to see if any of our sensitive information, such
as our GPS location, can reach the outside world
This is the basic goal of a taint analysis



Motivation

I Android permissions
are coarse

I Apps are composed of
many parts

I “Who is using my GPS
data?”

I Can sensitive data reach
the outside world?

2

In general, the privacy permissions on Android applications are
fairly coarse grained.
When a user wants to install a third-party application, they
must accept the requested permissions of the application
Here we see the ever popular Brightest Flashlight Ever Free
Here, the application requests, amongst other things, the user’s
location
Now a typical android application is composed of many parts,
for example, it may use external advertising libraries
As a result, it can be hard to see which part of the application is
using the permission
To continue this example, we don’t know if the flashlight is using
our GPS to produce light or if some other part of the application
is using our data
So, we would like to see if any of our sensitive information, such
as our GPS location, can reach the outside world
This is the basic goal of a taint analysis



Motivation

...
double loc = getGPS();
...
double loc2 = loc + 10;
...
if (c) {

sendGPS(loc2, CIA);
}

Can data from the source be
used in the sink?

;

3

More specifically, we can see how a taint analysis works in
practice.
We consider locations where sensitive data is accessed to be
taint sources
Locations where data could escape the program are considered
as taint sinks
We would like to see if data from a source could be used in a sink
One way to do this is to label sensitive data with a tag
Then, data using labeled data be comes tainted
For example, since loc2 uses loc, it becomes transitively tainted
Then, at a taint sink, you simply check if any of the data is
tagged.
In this case, the data is tainted and we could raise a flag to the
user.



Motivation

...
double loc = getGPS();
...
double loc2 = loc + 10;
...
if (c) {

sendGPS(loc2, CIA);
}

Can data from the source be
used in the sink?

;

taint source

3

More specifically, we can see how a taint analysis works in
practice.
We consider locations where sensitive data is accessed to be
taint sources
Locations where data could escape the program are considered
as taint sinks
We would like to see if data from a source could be used in a sink
One way to do this is to label sensitive data with a tag
Then, data using labeled data be comes tainted
For example, since loc2 uses loc, it becomes transitively tainted
Then, at a taint sink, you simply check if any of the data is
tagged.
In this case, the data is tainted and we could raise a flag to the
user.



Motivation

...
double loc = getGPS();
...
double loc2 = loc + 10;
...
if (c) {

sendGPS(loc2, CIA);
}

Can data from the source be
used in the sink?

;

taint source

taint sink

3

More specifically, we can see how a taint analysis works in
practice.
We consider locations where sensitive data is accessed to be
taint sources
Locations where data could escape the program are considered
as taint sinks
We would like to see if data from a source could be used in a sink
One way to do this is to label sensitive data with a tag
Then, data using labeled data be comes tainted
For example, since loc2 uses loc, it becomes transitively tainted
Then, at a taint sink, you simply check if any of the data is
tagged.
In this case, the data is tainted and we could raise a flag to the
user.



Motivation

...
double loc = getGPS();
...
double loc2 = loc + 10;
...
if (c) {

sendGPS(loc2, CIA);
}

Can data from the source be
used in the sink?

;

taint source

taint sink

3

More specifically, we can see how a taint analysis works in
practice.
We consider locations where sensitive data is accessed to be
taint sources
Locations where data could escape the program are considered
as taint sinks
We would like to see if data from a source could be used in a sink
One way to do this is to label sensitive data with a tag
Then, data using labeled data be comes tainted
For example, since loc2 uses loc, it becomes transitively tainted
Then, at a taint sink, you simply check if any of the data is
tagged.
In this case, the data is tainted and we could raise a flag to the
user.



Motivation

...
double loc = getGPS();
...
double loc2 = loc + 10;
...
if (c) {

sendGPS(loc2, CIA);
}

Can data from the source be
used in the sink?

;

taint source

taint sink

transitively tainted

3

More specifically, we can see how a taint analysis works in
practice.
We consider locations where sensitive data is accessed to be
taint sources
Locations where data could escape the program are considered
as taint sinks
We would like to see if data from a source could be used in a sink
One way to do this is to label sensitive data with a tag
Then, data using labeled data be comes tainted
For example, since loc2 uses loc, it becomes transitively tainted
Then, at a taint sink, you simply check if any of the data is
tagged.
In this case, the data is tainted and we could raise a flag to the
user.



Motivation

App 1

double loc = getGPS();
...
...
double loc2 = loc + 10;
...
...
sendMsg(app2, loc2);

App 2

double recv = recvMsg()
...
...
double t2 = recv - 10;
...
...
socketSend(t2);

4

Here is a more realistic example showing some features of taint
droid
Two applications are running and communicating to each other
using message passing
As we saw last week, it is possible for an application with, for
example, GPS access permissions to send GPS data to an
application without GPS permissions
Taint droid is capable of tracking this
First, an application reads GPS data
It is then used in some intermediate computations before being
sent in a message
The tainted data then travels through the operating system
where it is recieved in another process
In the other process, the tainted data is used again in some
computations before it is finally sent out over the network
through a socket
TaintDroid is able to track the taint information both inside the
processses and through android’s message passing framework to
detect possible leaks of sensitive information through the
network



Motivation

App 1

double loc = getGPS();
...
...
double loc2 = loc + 10;
...
...
sendMsg(app2, loc2);

App 2

double recv = recvMsg()
...
...
double t2 = recv - 10;
...
...
socketSend(t2);

taint source

4

Here is a more realistic example showing some features of taint
droid
Two applications are running and communicating to each other
using message passing
As we saw last week, it is possible for an application with, for
example, GPS access permissions to send GPS data to an
application without GPS permissions
Taint droid is capable of tracking this
First, an application reads GPS data
It is then used in some intermediate computations before being
sent in a message
The tainted data then travels through the operating system
where it is recieved in another process
In the other process, the tainted data is used again in some
computations before it is finally sent out over the network
through a socket
TaintDroid is able to track the taint information both inside the
processses and through android’s message passing framework to
detect possible leaks of sensitive information through the
network



Motivation

App 1

double loc = getGPS();
...
...
double loc2 = loc + 10;
...
...
sendMsg(app2, loc2);

App 2

double recv = recvMsg()
...
...
double t2 = recv - 10;
...
...
socketSend(t2);

taint source

transitively tainted

4

Here is a more realistic example showing some features of taint
droid
Two applications are running and communicating to each other
using message passing
As we saw last week, it is possible for an application with, for
example, GPS access permissions to send GPS data to an
application without GPS permissions
Taint droid is capable of tracking this
First, an application reads GPS data
It is then used in some intermediate computations before being
sent in a message
The tainted data then travels through the operating system
where it is recieved in another process
In the other process, the tainted data is used again in some
computations before it is finally sent out over the network
through a socket
TaintDroid is able to track the taint information both inside the
processses and through android’s message passing framework to
detect possible leaks of sensitive information through the
network



Motivation

App 1

double loc = getGPS();
...
...
double loc2 = loc + 10;
...
...
sendMsg(app2, loc2);

App 2

double recv = recvMsg()
...
...
double t2 = recv - 10;
...
...
socketSend(t2);

taint source

transitively tainted

tainted msg send

4

Here is a more realistic example showing some features of taint
droid
Two applications are running and communicating to each other
using message passing
As we saw last week, it is possible for an application with, for
example, GPS access permissions to send GPS data to an
application without GPS permissions
Taint droid is capable of tracking this
First, an application reads GPS data
It is then used in some intermediate computations before being
sent in a message
The tainted data then travels through the operating system
where it is recieved in another process
In the other process, the tainted data is used again in some
computations before it is finally sent out over the network
through a socket
TaintDroid is able to track the taint information both inside the
processses and through android’s message passing framework to
detect possible leaks of sensitive information through the
network



Motivation

App 1

double loc = getGPS();
...
...
double loc2 = loc + 10;
...
...
sendMsg(app2, loc2);

App 2

double recv = recvMsg()
...
...
double t2 = recv - 10;
...
...
socketSend(t2);

taint source

transitively tainted

tainted msg send

tainted msg recv

4

Here is a more realistic example showing some features of taint
droid
Two applications are running and communicating to each other
using message passing
As we saw last week, it is possible for an application with, for
example, GPS access permissions to send GPS data to an
application without GPS permissions
Taint droid is capable of tracking this
First, an application reads GPS data
It is then used in some intermediate computations before being
sent in a message
The tainted data then travels through the operating system
where it is recieved in another process
In the other process, the tainted data is used again in some
computations before it is finally sent out over the network
through a socket
TaintDroid is able to track the taint information both inside the
processses and through android’s message passing framework to
detect possible leaks of sensitive information through the
network



Motivation

App 1

double loc = getGPS();
...
...
double loc2 = loc + 10;
...
...
sendMsg(app2, loc2);

App 2

double recv = recvMsg()
...
...
double t2 = recv - 10;
...
...
socketSend(t2);

taint source

transitively tainted

tainted msg send

tainted msg recv

transitively tainted

tainted network send

4

Here is a more realistic example showing some features of taint
droid
Two applications are running and communicating to each other
using message passing
As we saw last week, it is possible for an application with, for
example, GPS access permissions to send GPS data to an
application without GPS permissions
Taint droid is capable of tracking this
First, an application reads GPS data
It is then used in some intermediate computations before being
sent in a message
The tainted data then travels through the operating system
where it is recieved in another process
In the other process, the tainted data is used again in some
computations before it is finally sent out over the network
through a socket
TaintDroid is able to track the taint information both inside the
processses and through android’s message passing framework to
detect possible leaks of sensitive information through the
network



TaintDroid
I TaintDroid: Dynamic Taint Analysis for Android
I Detects transmission of sensitive data
I Low runtime overhead (≈14%)
I Does not require source code
I Implemented ontop of Dalvik VM

androidcentral.com
5

This brings us to the authors contribution
They present TaintDroid, a dynamic taint analyzer for Android
Applications
As presented in the previous example, the goal is to detect the
transmission of sensitive data
Since their analysis is dynamic, it is performed while the
application is run.
The authors note that there is a minimal overhead and little
precieved latency in the applications
Additionaly, since they modified the Dalvik VM, their method
does not require the source code of the program.



How?

6

This figure shows a high-level overview of their approach
First, all variables reading from taint sources are labeled
The Dalvik VM is modified in order to track the propegation of
the label between variables
Since applications can communicate, they also track taint flows
through interprocess communcation
As we saw last week, data from trusted applications can flow to
untrusted applications due to insecure IPC. TaintDroid is able
to detect this.
Because they use the VM to propegate taint information, they
may lose data through native function calls
So, they monitor executed methods to propegate taint
information through known native code
Finally, they track tainted data through files
By monitoring the network interface, they can see if tainted data
can escape
Since they are storing and tracking information, a big part of
this work, as we will see, is a tradeoff between acurracy and
scalability



Overview

Introduction

Background

TaintDroid
Example
Interpreted Code
Native Code
IPC
Files

Experiments

7

Next, I will go over some background information about android



Android Components
I Dalvik VM interpreter
I Native code
I Binder IPC

xda-developers.com

8

In order to understand their work, we need to briefly go over
three parts of the Android OS
First, we will talk about the Dalvik VM Intepreter, Android’s
Java VM.
Then, we will discuss Java applications calling into native code
And finally, we will look at the binder message passing system



Dalvik VM
I Dalvik EXecutable (DEX) byte code

I Each application has a Dalvik interpreter instance
I DEX is a register based language

I move vA, vB
I add-int dst, src1, src2

I Language structure determines propagation rules

9

Android applications are most commonly written in Java and
then are compiled to Dalvik Executables
Each individual application has its own Dalvik interpreter
instance
The DEX language itself is register based (as opposed to stack
based)
All operations are performed on registers; values must first be
loaded and then afterwards stored
Looks a lot like other register machines
As we will see later, the structure of the language determines
how taint information is propagated



Dalvik VM
I Dalvik EXecutable (DEX) byte code
I Each application has a Dalvik interpreter instance

I DEX is a register based language

I move vA, vB
I add-int dst, src1, src2

I Language structure determines propagation rules

9

Android applications are most commonly written in Java and
then are compiled to Dalvik Executables
Each individual application has its own Dalvik interpreter
instance
The DEX language itself is register based (as opposed to stack
based)
All operations are performed on registers; values must first be
loaded and then afterwards stored
Looks a lot like other register machines
As we will see later, the structure of the language determines
how taint information is propagated



Dalvik VM
I Dalvik EXecutable (DEX) byte code
I Each application has a Dalvik interpreter instance
I DEX is a register based language

I move vA, vB
I add-int dst, src1, src2

I Language structure determines propagation rules

9

Android applications are most commonly written in Java and
then are compiled to Dalvik Executables
Each individual application has its own Dalvik interpreter
instance
The DEX language itself is register based (as opposed to stack
based)
All operations are performed on registers; values must first be
loaded and then afterwards stored
Looks a lot like other register machines
As we will see later, the structure of the language determines
how taint information is propagated



Dalvik VM
I Dalvik EXecutable (DEX) byte code
I Each application has a Dalvik interpreter instance
I DEX is a register based language

I move vA, vB

I add-int dst, src1, src2

I Language structure determines propagation rules

9

Android applications are most commonly written in Java and
then are compiled to Dalvik Executables
Each individual application has its own Dalvik interpreter
instance
The DEX language itself is register based (as opposed to stack
based)
All operations are performed on registers; values must first be
loaded and then afterwards stored
Looks a lot like other register machines
As we will see later, the structure of the language determines
how taint information is propagated



Dalvik VM
I Dalvik EXecutable (DEX) byte code
I Each application has a Dalvik interpreter instance
I DEX is a register based language

I move vA, vB
I add-int dst, src1, src2

I Language structure determines propagation rules

9

Android applications are most commonly written in Java and
then are compiled to Dalvik Executables
Each individual application has its own Dalvik interpreter
instance
The DEX language itself is register based (as opposed to stack
based)
All operations are performed on registers; values must first be
loaded and then afterwards stored
Looks a lot like other register machines
As we will see later, the structure of the language determines
how taint information is propagated



Dalvik VM
I Dalvik EXecutable (DEX) byte code
I Each application has a Dalvik interpreter instance
I DEX is a register based language

I move vA, vB
I add-int dst, src1, src2

I Language structure determines propagation rules

9

Android applications are most commonly written in Java and
then are compiled to Dalvik Executables
Each individual application has its own Dalvik interpreter
instance
The DEX language itself is register based (as opposed to stack
based)
All operations are performed on registers; values must first be
loaded and then afterwards stored
Looks a lot like other register machines
As we will see later, the structure of the language determines
how taint information is propagated



Native Code
I Android allows Java to execute native code

I Performance optimizations
I Third-party libraries (OpenGL, WebKit)
I Kernel functions

I Can access Java internals

I Native code must be trusted

I Model taint propagation through native code

I writeFile(taint)

10

Android allows applications to call into native code
This can be used, for example, to optimize performance, access
third-party libraries like OpenGL, or call into kernel functions
From a security standpoint, one key feature of native code
execution is that it has access to Java internals
So, since the authors are taint tracking on the Java VM, the
native code is not tracked and must be trusted
To track taint flow through trusted native code, the authors use
the semantics of the native functions and the taint information
of the arguments
For example, if there is a native method to write data to a file,
the authors know that if the argument is tainted the file
becomes tainted.



Native Code
I Android allows Java to execute native code

I Performance optimizations

I Third-party libraries (OpenGL, WebKit)
I Kernel functions

I Can access Java internals

I Native code must be trusted

I Model taint propagation through native code

I writeFile(taint)

10

Android allows applications to call into native code
This can be used, for example, to optimize performance, access
third-party libraries like OpenGL, or call into kernel functions
From a security standpoint, one key feature of native code
execution is that it has access to Java internals
So, since the authors are taint tracking on the Java VM, the
native code is not tracked and must be trusted
To track taint flow through trusted native code, the authors use
the semantics of the native functions and the taint information
of the arguments
For example, if there is a native method to write data to a file,
the authors know that if the argument is tainted the file
becomes tainted.



Native Code
I Android allows Java to execute native code

I Performance optimizations
I Third-party libraries (OpenGL, WebKit)

I Kernel functions
I Can access Java internals

I Native code must be trusted

I Model taint propagation through native code

I writeFile(taint)

10

Android allows applications to call into native code
This can be used, for example, to optimize performance, access
third-party libraries like OpenGL, or call into kernel functions
From a security standpoint, one key feature of native code
execution is that it has access to Java internals
So, since the authors are taint tracking on the Java VM, the
native code is not tracked and must be trusted
To track taint flow through trusted native code, the authors use
the semantics of the native functions and the taint information
of the arguments
For example, if there is a native method to write data to a file,
the authors know that if the argument is tainted the file
becomes tainted.



Native Code
I Android allows Java to execute native code

I Performance optimizations
I Third-party libraries (OpenGL, WebKit)
I Kernel functions

I Can access Java internals

I Native code must be trusted

I Model taint propagation through native code

I writeFile(taint)

10

Android allows applications to call into native code
This can be used, for example, to optimize performance, access
third-party libraries like OpenGL, or call into kernel functions
From a security standpoint, one key feature of native code
execution is that it has access to Java internals
So, since the authors are taint tracking on the Java VM, the
native code is not tracked and must be trusted
To track taint flow through trusted native code, the authors use
the semantics of the native functions and the taint information
of the arguments
For example, if there is a native method to write data to a file,
the authors know that if the argument is tainted the file
becomes tainted.



Native Code
I Android allows Java to execute native code

I Performance optimizations
I Third-party libraries (OpenGL, WebKit)
I Kernel functions

I Can access Java internals

I Native code must be trusted
I Model taint propagation through native code

I writeFile(taint)

10

Android allows applications to call into native code
This can be used, for example, to optimize performance, access
third-party libraries like OpenGL, or call into kernel functions
From a security standpoint, one key feature of native code
execution is that it has access to Java internals
So, since the authors are taint tracking on the Java VM, the
native code is not tracked and must be trusted
To track taint flow through trusted native code, the authors use
the semantics of the native functions and the taint information
of the arguments
For example, if there is a native method to write data to a file,
the authors know that if the argument is tainted the file
becomes tainted.



Native Code
I Android allows Java to execute native code

I Performance optimizations
I Third-party libraries (OpenGL, WebKit)
I Kernel functions

I Can access Java internals
I Native code must be trusted

I Model taint propagation through native code

I writeFile(taint)

10

Android allows applications to call into native code
This can be used, for example, to optimize performance, access
third-party libraries like OpenGL, or call into kernel functions
From a security standpoint, one key feature of native code
execution is that it has access to Java internals
So, since the authors are taint tracking on the Java VM, the
native code is not tracked and must be trusted
To track taint flow through trusted native code, the authors use
the semantics of the native functions and the taint information
of the arguments
For example, if there is a native method to write data to a file,
the authors know that if the argument is tainted the file
becomes tainted.



Native Code
I Android allows Java to execute native code

I Performance optimizations
I Third-party libraries (OpenGL, WebKit)
I Kernel functions

I Can access Java internals
I Native code must be trusted

I Model taint propagation through native code

I writeFile(taint)

10

Android allows applications to call into native code
This can be used, for example, to optimize performance, access
third-party libraries like OpenGL, or call into kernel functions
From a security standpoint, one key feature of native code
execution is that it has access to Java internals
So, since the authors are taint tracking on the Java VM, the
native code is not tracked and must be trusted
To track taint flow through trusted native code, the authors use
the semantics of the native functions and the taint information
of the arguments
For example, if there is a native method to write data to a file,
the authors know that if the argument is tainted the file
becomes tainted.



Native Code
I Android allows Java to execute native code

I Performance optimizations
I Third-party libraries (OpenGL, WebKit)
I Kernel functions

I Can access Java internals
I Native code must be trusted

I Model taint propagation through native code
I writeFile(taint)

10

Android allows applications to call into native code
This can be used, for example, to optimize performance, access
third-party libraries like OpenGL, or call into kernel functions
From a security standpoint, one key feature of native code
execution is that it has access to Java internals
So, since the authors are taint tracking on the Java VM, the
native code is not tracked and must be trusted
To track taint flow through trusted native code, the authors use
the semantics of the native functions and the taint information
of the arguments
For example, if there is a native method to write data to a file,
the authors know that if the argument is tainted the file
becomes tainted.



Binder IPC
I Inter-process communication goes through Binder

I Messages sent via defined interfaces
I Process A parcels data
I Process A send data to Process B
I Process B reads parcel

11

Android IPC uses a framework called binder.
Processes define an interface allowing them to accept data
For the sake of understanding this work, we can use a simplistic
view of how IPC works
First, a process bundles up a bunch of data to send
Then it performs the send operations
And finally, the receiving process unpacks the data
Hopefully we can see how this pertains to taint tracking: tainted
data in a message results in a tainted read



Binder IPC
I Inter-process communication goes through Binder
I Messages sent via defined interfaces

I Process A parcels data
I Process A send data to Process B
I Process B reads parcel

11

Android IPC uses a framework called binder.
Processes define an interface allowing them to accept data
For the sake of understanding this work, we can use a simplistic
view of how IPC works
First, a process bundles up a bunch of data to send
Then it performs the send operations
And finally, the receiving process unpacks the data
Hopefully we can see how this pertains to taint tracking: tainted
data in a message results in a tainted read



Binder IPC
I Inter-process communication goes through Binder
I Messages sent via defined interfaces
I Process A parcels data

I Process A send data to Process B
I Process B reads parcel

11

Android IPC uses a framework called binder.
Processes define an interface allowing them to accept data
For the sake of understanding this work, we can use a simplistic
view of how IPC works
First, a process bundles up a bunch of data to send
Then it performs the send operations
And finally, the receiving process unpacks the data
Hopefully we can see how this pertains to taint tracking: tainted
data in a message results in a tainted read



Binder IPC
I Inter-process communication goes through Binder
I Messages sent via defined interfaces
I Process A parcels data
I Process A send data to Process B

I Process B reads parcel

11

Android IPC uses a framework called binder.
Processes define an interface allowing them to accept data
For the sake of understanding this work, we can use a simplistic
view of how IPC works
First, a process bundles up a bunch of data to send
Then it performs the send operations
And finally, the receiving process unpacks the data
Hopefully we can see how this pertains to taint tracking: tainted
data in a message results in a tainted read



Binder IPC
I Inter-process communication goes through Binder
I Messages sent via defined interfaces
I Process A parcels data
I Process A send data to Process B
I Process B reads parcel

11

Android IPC uses a framework called binder.
Processes define an interface allowing them to accept data
For the sake of understanding this work, we can use a simplistic
view of how IPC works
First, a process bundles up a bunch of data to send
Then it performs the send operations
And finally, the receiving process unpacks the data
Hopefully we can see how this pertains to taint tracking: tainted
data in a message results in a tainted read



Overview

Introduction

Background

TaintDroid
Example
Interpreted Code
Native Code
IPC
Files

Experiments

12

Next, I’ll go over more of the details of how TaintDroid is setup
To do this I’ll first present an example showing all the features
of TaintDroid
Then, I’ll discuss taint tracking in the VM, through native code,
and through IPC



Example

13

Here is a scenario showing the features of TaintDroid
First, a trusted application reads some secure data, for example,
the user’s location
Taint information is stored in what the authors call TaintTags
Then, the trusted application uses the tainted data in some VM
operations
Through the operations, such as addition or subtraction, or
through native methods, the taint data propagates
Then, when the tainted application uses IPC, the kernel Binder
module captures the taint information at the send point
The parcel is passed through the kernel to the receiving
application
When the parcel is unpacked, the receiving process has the taint
information from the sender
Then, the receiving application uses the tainted data within its
VM, thereby propagating the taint information
Finally, the receiving application runs a taint sink, for example a
network send, with the tainted IPC data raising an alarm
To track all this taint information, TaintDroid must handle
interpreted code, native code, and IPC.



Taint Tags
I Associate taint tag with each variable

I Performance/Memory overhead

I Monitored variables have an adjacent 32-bit
bit-vector

I Local variables stored on stack
I Double stack frame size for taint tags
I One 32-bit tag per array

14

To track propagation of taint information, each variable in the
application is associated with a taint tag
The size of the taint tag, or the granularity at which variables
are monitored has a big influence on performance
TaintDroid assigns, to each monitored variable, a 32-bit
bit-vector
The bit-vector is adjacent to the variable to make use of spatial
locality
32-bits allow for the user to 32 different taint markings, for
example, allowing different taint sources to be tracked
independently
To track local variables, which are stored on a stack similar to
x86, the stack allocation size is double and each variable gets an
extra taint bitvector
To handle the performance overhead, an array variable has only
one 32-bit tag.
Because of this, there is an increase in performance and false
positives



Taint Tags
I Associate taint tag with each variable

I Performance/Memory overhead

I Monitored variables have an adjacent 32-bit
bit-vector

I Local variables stored on stack
I Double stack frame size for taint tags
I One 32-bit tag per array

14

To track propagation of taint information, each variable in the
application is associated with a taint tag
The size of the taint tag, or the granularity at which variables
are monitored has a big influence on performance
TaintDroid assigns, to each monitored variable, a 32-bit
bit-vector
The bit-vector is adjacent to the variable to make use of spatial
locality
32-bits allow for the user to 32 different taint markings, for
example, allowing different taint sources to be tracked
independently
To track local variables, which are stored on a stack similar to
x86, the stack allocation size is double and each variable gets an
extra taint bitvector
To handle the performance overhead, an array variable has only
one 32-bit tag.
Because of this, there is an increase in performance and false
positives



Taint Tags
I Associate taint tag with each variable

I Performance/Memory overhead

I Monitored variables have an adjacent 32-bit
bit-vector

I Local variables stored on stack
I Double stack frame size for taint tags
I One 32-bit tag per array

14

To track propagation of taint information, each variable in the
application is associated with a taint tag
The size of the taint tag, or the granularity at which variables
are monitored has a big influence on performance
TaintDroid assigns, to each monitored variable, a 32-bit
bit-vector
The bit-vector is adjacent to the variable to make use of spatial
locality
32-bits allow for the user to 32 different taint markings, for
example, allowing different taint sources to be tracked
independently
To track local variables, which are stored on a stack similar to
x86, the stack allocation size is double and each variable gets an
extra taint bitvector
To handle the performance overhead, an array variable has only
one 32-bit tag.
Because of this, there is an increase in performance and false
positives



Taint Tags
I Associate taint tag with each variable

I Performance/Memory overhead

I Monitored variables have an adjacent 32-bit
bit-vector

I Local variables stored on stack

I Double stack frame size for taint tags
I One 32-bit tag per array

14

To track propagation of taint information, each variable in the
application is associated with a taint tag
The size of the taint tag, or the granularity at which variables
are monitored has a big influence on performance
TaintDroid assigns, to each monitored variable, a 32-bit
bit-vector
The bit-vector is adjacent to the variable to make use of spatial
locality
32-bits allow for the user to 32 different taint markings, for
example, allowing different taint sources to be tracked
independently
To track local variables, which are stored on a stack similar to
x86, the stack allocation size is double and each variable gets an
extra taint bitvector
To handle the performance overhead, an array variable has only
one 32-bit tag.
Because of this, there is an increase in performance and false
positives



Taint Tags
I Associate taint tag with each variable

I Performance/Memory overhead

I Monitored variables have an adjacent 32-bit
bit-vector

I Local variables stored on stack
I Double stack frame size for taint tags

I One 32-bit tag per array

14

To track propagation of taint information, each variable in the
application is associated with a taint tag
The size of the taint tag, or the granularity at which variables
are monitored has a big influence on performance
TaintDroid assigns, to each monitored variable, a 32-bit
bit-vector
The bit-vector is adjacent to the variable to make use of spatial
locality
32-bits allow for the user to 32 different taint markings, for
example, allowing different taint sources to be tracked
independently
To track local variables, which are stored on a stack similar to
x86, the stack allocation size is double and each variable gets an
extra taint bitvector
To handle the performance overhead, an array variable has only
one 32-bit tag.
Because of this, there is an increase in performance and false
positives



Taint Tags
I Associate taint tag with each variable

I Performance/Memory overhead

I Monitored variables have an adjacent 32-bit
bit-vector

I Local variables stored on stack
I Double stack frame size for taint tags
I One 32-bit tag per array

14

To track propagation of taint information, each variable in the
application is associated with a taint tag
The size of the taint tag, or the granularity at which variables
are monitored has a big influence on performance
TaintDroid assigns, to each monitored variable, a 32-bit
bit-vector
The bit-vector is adjacent to the variable to make use of spatial
locality
32-bits allow for the user to 32 different taint markings, for
example, allowing different taint sources to be tracked
independently
To track local variables, which are stored on a stack similar to
x86, the stack allocation size is double and each variable gets an
extra taint bitvector
To handle the performance overhead, an array variable has only
one 32-bit tag.
Because of this, there is an increase in performance and false
positives



Taint Tag Example
I 32-bit tags allow multiple sources to be tracked

I Bit 1: GPS Location
I Bit 2: Phone number
I …

15

The use of the 32-bit taint tags is left up to the user
Each bit could be used to track a single taint source
This allows the user to see not just if tainted information flows
into a sink but also what type of taint source flows into a sink



On the left hand side of this image we can see the modified stack
to include taint bitvectors
The dark gray items are the added taint tags and the light gray
items are the variables in the application
You can see how the taint tags are interleaved with all the
variables



Array Inaccuracies

arr[1] = notTainted();
arr[0] = taint();
t1 = arr[1]; // tainted!
taintSink(t1); // false

// alarm

I Over-approximate array
with a single taint tag

I Considers all array
elements as single
element

I False alarms

17

By considering array’s as a single element the authors gain
performance but increase the amount of false alarms
If a tainted item is storred into an array then the entire array
becomes tainted
As a result, a read of any value from the array leads to taint
propagation
In other words, all items in an array are considered to be a
single element
In this example, we see index 1 of the array is not tainted while
index 0 is.
A subsequent read of index 1, even though in reality it is not
tainted, results in taint propagation from index 0 to 1
So, if t1 is passed to a taintSink, a false alarm will be generated.



Interpreted Code Taint Propagation
I Variable level taint tracking
I Based on structural semantics of DEX code
I Tracks through primitive types and object references

18

As said before, inside the Dalvik VM there is variable level taint
tracking
The taint propagation, as I will show soon, is based on the
structural semantics of the DEX machine language
This is essentially the same as the static and dynamic taint
analyses we’ve been where each statement in the program has
associated semantics releative to the analysis



Taint Propagation Logic
I L: all possible taint markings

I t ∈ L: taint tag
I vx: virtual register x
I fx: field variable of class x
I fx: static field
I vx(fx): instance field (vx.x)
I vx[·]: array access
I τ(v)← t: set taint tag of v to t

I t← τ(v): set t to taint tag of v

19

First, we define the set of all possible taint markings to be L
A taint tag for a variable is one of these possible taint markings
Local and argument variables are stored on registers denoted by
v.
Fields of a class are represented through f
Static fields can directly be accessed through the class
For a given instance of a class, the instance variable is accessed
with the register and field name
This is done similar to the familiar dot notation in an actual
programming language
And finally, array accesses use the typical square bracket
notation
The taint map is defined using tau. It associates with each
variable a taint tag
The arrow allows for updates and retrievals of a variables taint
information.
We can read the taint information of a variable or update the
taint information.



Taint Propagation Logic
I L: all possible taint markings
I t ∈ L: taint tag

I vx: virtual register x
I fx: field variable of class x
I fx: static field
I vx(fx): instance field (vx.x)
I vx[·]: array access
I τ(v)← t: set taint tag of v to t

I t← τ(v): set t to taint tag of v

19

First, we define the set of all possible taint markings to be L
A taint tag for a variable is one of these possible taint markings
Local and argument variables are stored on registers denoted by
v.
Fields of a class are represented through f
Static fields can directly be accessed through the class
For a given instance of a class, the instance variable is accessed
with the register and field name
This is done similar to the familiar dot notation in an actual
programming language
And finally, array accesses use the typical square bracket
notation
The taint map is defined using tau. It associates with each
variable a taint tag
The arrow allows for updates and retrievals of a variables taint
information.
We can read the taint information of a variable or update the
taint information.



Taint Propagation Logic
I L: all possible taint markings
I t ∈ L: taint tag
I vx: virtual register x

I fx: field variable of class x
I fx: static field
I vx(fx): instance field (vx.x)
I vx[·]: array access
I τ(v)← t: set taint tag of v to t

I t← τ(v): set t to taint tag of v

19

First, we define the set of all possible taint markings to be L
A taint tag for a variable is one of these possible taint markings
Local and argument variables are stored on registers denoted by
v.
Fields of a class are represented through f
Static fields can directly be accessed through the class
For a given instance of a class, the instance variable is accessed
with the register and field name
This is done similar to the familiar dot notation in an actual
programming language
And finally, array accesses use the typical square bracket
notation
The taint map is defined using tau. It associates with each
variable a taint tag
The arrow allows for updates and retrievals of a variables taint
information.
We can read the taint information of a variable or update the
taint information.



Taint Propagation Logic
I L: all possible taint markings
I t ∈ L: taint tag
I vx: virtual register x
I fx: field variable of class x

I fx: static field
I vx(fx): instance field (vx.x)
I vx[·]: array access
I τ(v)← t: set taint tag of v to t

I t← τ(v): set t to taint tag of v

19

First, we define the set of all possible taint markings to be L
A taint tag for a variable is one of these possible taint markings
Local and argument variables are stored on registers denoted by
v.
Fields of a class are represented through f
Static fields can directly be accessed through the class
For a given instance of a class, the instance variable is accessed
with the register and field name
This is done similar to the familiar dot notation in an actual
programming language
And finally, array accesses use the typical square bracket
notation
The taint map is defined using tau. It associates with each
variable a taint tag
The arrow allows for updates and retrievals of a variables taint
information.
We can read the taint information of a variable or update the
taint information.



Taint Propagation Logic
I L: all possible taint markings
I t ∈ L: taint tag
I vx: virtual register x
I fx: field variable of class x
I fx: static field

I vx(fx): instance field (vx.x)
I vx[·]: array access
I τ(v)← t: set taint tag of v to t

I t← τ(v): set t to taint tag of v

19

First, we define the set of all possible taint markings to be L
A taint tag for a variable is one of these possible taint markings
Local and argument variables are stored on registers denoted by
v.
Fields of a class are represented through f
Static fields can directly be accessed through the class
For a given instance of a class, the instance variable is accessed
with the register and field name
This is done similar to the familiar dot notation in an actual
programming language
And finally, array accesses use the typical square bracket
notation
The taint map is defined using tau. It associates with each
variable a taint tag
The arrow allows for updates and retrievals of a variables taint
information.
We can read the taint information of a variable or update the
taint information.



Taint Propagation Logic
I L: all possible taint markings
I t ∈ L: taint tag
I vx: virtual register x
I fx: field variable of class x
I fx: static field
I vx(fx): instance field (vx.x)

I vx[·]: array access
I τ(v)← t: set taint tag of v to t

I t← τ(v): set t to taint tag of v

19

First, we define the set of all possible taint markings to be L
A taint tag for a variable is one of these possible taint markings
Local and argument variables are stored on registers denoted by
v.
Fields of a class are represented through f
Static fields can directly be accessed through the class
For a given instance of a class, the instance variable is accessed
with the register and field name
This is done similar to the familiar dot notation in an actual
programming language
And finally, array accesses use the typical square bracket
notation
The taint map is defined using tau. It associates with each
variable a taint tag
The arrow allows for updates and retrievals of a variables taint
information.
We can read the taint information of a variable or update the
taint information.



Taint Propagation Logic
I L: all possible taint markings
I t ∈ L: taint tag
I vx: virtual register x
I fx: field variable of class x
I fx: static field
I vx(fx): instance field (vx.x)
I vx[·]: array access

I τ(v)← t: set taint tag of v to t

I t← τ(v): set t to taint tag of v

19

First, we define the set of all possible taint markings to be L
A taint tag for a variable is one of these possible taint markings
Local and argument variables are stored on registers denoted by
v.
Fields of a class are represented through f
Static fields can directly be accessed through the class
For a given instance of a class, the instance variable is accessed
with the register and field name
This is done similar to the familiar dot notation in an actual
programming language
And finally, array accesses use the typical square bracket
notation
The taint map is defined using tau. It associates with each
variable a taint tag
The arrow allows for updates and retrievals of a variables taint
information.
We can read the taint information of a variable or update the
taint information.



Taint Propagation Logic
I L: all possible taint markings
I t ∈ L: taint tag
I vx: virtual register x
I fx: field variable of class x
I fx: static field
I vx(fx): instance field (vx.x)
I vx[·]: array access
I τ(v)← t: set taint tag of v to t

I t← τ(v): set t to taint tag of v

19

First, we define the set of all possible taint markings to be L
A taint tag for a variable is one of these possible taint markings
Local and argument variables are stored on registers denoted by
v.
Fields of a class are represented through f
Static fields can directly be accessed through the class
For a given instance of a class, the instance variable is accessed
with the register and field name
This is done similar to the familiar dot notation in an actual
programming language
And finally, array accesses use the typical square bracket
notation
The taint map is defined using tau. It associates with each
variable a taint tag
The arrow allows for updates and retrievals of a variables taint
information.
We can read the taint information of a variable or update the
taint information.



Taint Propagation Logic
I L: all possible taint markings
I t ∈ L: taint tag
I vx: virtual register x
I fx: field variable of class x
I fx: static field
I vx(fx): instance field (vx.x)
I vx[·]: array access
I τ(v)← t: set taint tag of v to t

I t← τ(v): set t to taint tag of v

19

First, we define the set of all possible taint markings to be L
A taint tag for a variable is one of these possible taint markings
Local and argument variables are stored on registers denoted by
v.
Fields of a class are represented through f
Static fields can directly be accessed through the class
For a given instance of a class, the instance variable is accessed
with the register and field name
This is done similar to the familiar dot notation in an actual
programming language
And finally, array accesses use the typical square bracket
notation
The taint map is defined using tau. It associates with each
variable a taint tag
The arrow allows for updates and retrievals of a variables taint
information.
We can read the taint information of a variable or update the
taint information.



Taint Propagation Logic

DEX Instruction Semantics Propagation

move va vb va ← vb τ(va)← τ(vb)

unary va vb va ← ⊗va τ(va)← τ(vb)
aput va vb vc vb[vc]← va τ(vb[·])← τ(vb[·]) ∪ τ(va)

Remaining operations are defined in the paper.

20

Given our new language, we can analyze the structure of each
DEX instruction to show how it updates the taint information
We’ll look at a few of the instruction and show how this is done
First, for the DEX move instruction, the semantics is like
assignment in Java. The value of vb is assigned to va
In terms of the taint update, this simply propagates the taint
information from vb to va
A unary operation works similarly: the actual semantics of the
operator is ignored and the taint values are propegated
Finally, an array update stores some value va into array vb at
location vc
Here we can see how the taint information of the entire array is
stored into one value.
An array update takes the taint information of the entire array
and then conjoins it with the taint information of the assigned
variable
Operations for the remainder of the DEX language are defined
in the paper
What’s nice about this approach is we write simple rules for
each instruction and by structural induction we get a way to
define the taint flow for the entire program



Taint Propagation Logic

DEX Instruction Semantics Propagation

move va vb va ← vb τ(va)← τ(vb)
unary va vb va ← ⊗va τ(va)← τ(vb)

aput va vb vc vb[vc]← va τ(vb[·])← τ(vb[·]) ∪ τ(va)

Remaining operations are defined in the paper.

20

Given our new language, we can analyze the structure of each
DEX instruction to show how it updates the taint information
We’ll look at a few of the instruction and show how this is done
First, for the DEX move instruction, the semantics is like
assignment in Java. The value of vb is assigned to va
In terms of the taint update, this simply propagates the taint
information from vb to va
A unary operation works similarly: the actual semantics of the
operator is ignored and the taint values are propegated
Finally, an array update stores some value va into array vb at
location vc
Here we can see how the taint information of the entire array is
stored into one value.
An array update takes the taint information of the entire array
and then conjoins it with the taint information of the assigned
variable
Operations for the remainder of the DEX language are defined
in the paper
What’s nice about this approach is we write simple rules for
each instruction and by structural induction we get a way to
define the taint flow for the entire program



Taint Propagation Logic

DEX Instruction Semantics Propagation

move va vb va ← vb τ(va)← τ(vb)
unary va vb va ← ⊗va τ(va)← τ(vb)
aput va vb vc vb[vc]← va τ(vb[·])← τ(vb[·]) ∪ τ(va)

Remaining operations are defined in the paper.

20

Given our new language, we can analyze the structure of each
DEX instruction to show how it updates the taint information
We’ll look at a few of the instruction and show how this is done
First, for the DEX move instruction, the semantics is like
assignment in Java. The value of vb is assigned to va
In terms of the taint update, this simply propagates the taint
information from vb to va
A unary operation works similarly: the actual semantics of the
operator is ignored and the taint values are propegated
Finally, an array update stores some value va into array vb at
location vc
Here we can see how the taint information of the entire array is
stored into one value.
An array update takes the taint information of the entire array
and then conjoins it with the taint information of the assigned
variable
Operations for the remainder of the DEX language are defined
in the paper
What’s nice about this approach is we write simple rules for
each instruction and by structural induction we get a way to
define the taint flow for the entire program



Taint Propagation Logic

DEX Instruction Semantics Propagation

move va vb va ← vb τ(va)← τ(vb)
unary va vb va ← ⊗va τ(va)← τ(vb)
aput va vb vc vb[vc]← va τ(vb[·])← τ(vb[·]) ∪ τ(va)

Remaining operations are defined in the paper.

20

Given our new language, we can analyze the structure of each
DEX instruction to show how it updates the taint information
We’ll look at a few of the instruction and show how this is done
First, for the DEX move instruction, the semantics is like
assignment in Java. The value of vb is assigned to va
In terms of the taint update, this simply propagates the taint
information from vb to va
A unary operation works similarly: the actual semantics of the
operator is ignored and the taint values are propegated
Finally, an array update stores some value va into array vb at
location vc
Here we can see how the taint information of the entire array is
stored into one value.
An array update takes the taint information of the entire array
and then conjoins it with the taint information of the assigned
variable
Operations for the remainder of the DEX language are defined
in the paper
What’s nice about this approach is we write simple rules for
each instruction and by structural induction we get a way to
define the taint flow for the entire program



Native Code Taint Propagation
I Native code taint propagation is unmonitored

I At native call, update taint tags of:

I Return value
I Any modified class fields

I Two types of native methods:

I Internal VM methods
I JNI Methods

21

We just defined propagation of taint tags inside the Dalvik VM
However, the taint propagation through native code is
unmonitored
In order to maintain correctness, after the execution of some
native function we need to update the taint tags of the return
value and any class fields modified by the native call
There are two classes of native methods: internal VM methods,
and those using the Java native interface.



Native Code Taint Propagation
I Native code taint propagation is unmonitored
I At native call, update taint tags of:

I Return value
I Any modified class fields

I Two types of native methods:

I Internal VM methods
I JNI Methods

21

We just defined propagation of taint tags inside the Dalvik VM
However, the taint propagation through native code is
unmonitored
In order to maintain correctness, after the execution of some
native function we need to update the taint tags of the return
value and any class fields modified by the native call
There are two classes of native methods: internal VM methods,
and those using the Java native interface.



Native Code Taint Propagation
I Native code taint propagation is unmonitored
I At native call, update taint tags of:

I Return value

I Any modified class fields
I Two types of native methods:

I Internal VM methods
I JNI Methods

21

We just defined propagation of taint tags inside the Dalvik VM
However, the taint propagation through native code is
unmonitored
In order to maintain correctness, after the execution of some
native function we need to update the taint tags of the return
value and any class fields modified by the native call
There are two classes of native methods: internal VM methods,
and those using the Java native interface.



Native Code Taint Propagation
I Native code taint propagation is unmonitored
I At native call, update taint tags of:

I Return value
I Any modified class fields

I Two types of native methods:

I Internal VM methods
I JNI Methods

21

We just defined propagation of taint tags inside the Dalvik VM
However, the taint propagation through native code is
unmonitored
In order to maintain correctness, after the execution of some
native function we need to update the taint tags of the return
value and any class fields modified by the native call
There are two classes of native methods: internal VM methods,
and those using the Java native interface.



Native Code Taint Propagation
I Native code taint propagation is unmonitored
I At native call, update taint tags of:

I Return value
I Any modified class fields

I Two types of native methods:

I Internal VM methods
I JNI Methods

21

We just defined propagation of taint tags inside the Dalvik VM
However, the taint propagation through native code is
unmonitored
In order to maintain correctness, after the execution of some
native function we need to update the taint tags of the return
value and any class fields modified by the native call
There are two classes of native methods: internal VM methods,
and those using the Java native interface.



Native Code Taint Propagation
I Native code taint propagation is unmonitored
I At native call, update taint tags of:

I Return value
I Any modified class fields

I Two types of native methods:
I Internal VM methods

I JNI Methods

21

We just defined propagation of taint tags inside the Dalvik VM
However, the taint propagation through native code is
unmonitored
In order to maintain correctness, after the execution of some
native function we need to update the taint tags of the return
value and any class fields modified by the native call
There are two classes of native methods: internal VM methods,
and those using the Java native interface.



Native Code Taint Propagation
I Native code taint propagation is unmonitored
I At native call, update taint tags of:

I Return value
I Any modified class fields

I Two types of native methods:
I Internal VM methods
I JNI Methods

21

We just defined propagation of taint tags inside the Dalvik VM
However, the taint propagation through native code is
unmonitored
In order to maintain correctness, after the execution of some
native function we need to update the taint tags of the return
value and any class fields modified by the native call
There are two classes of native methods: internal VM methods,
and those using the Java native interface.



Internal VM Native Code Taint Propagation

22

An internal VM native call simply puts all the arguments passed
to the function in an array of 32-bit registers
The middle of this figure shows the stack augmentation for
internal VM calls
Although the stack layouts of the internal VM native calls and
the normal Dalvik calls are similar, the key difference is that the
internal VM calls are not running on the VM.
As such, the interpreter rules defined before will not be used



Internal VM Native Code Taint Propagation
I Patch internal VM native code to update taint info

I 185 internal VM methods
I Only 5 needed to be patched
I Infrequently modified

23

To handle this case, the authors simply patched the internal VM
functions to correctly use and update the taint information
At the time of writing, there were 185 internal VM native
methods
After inspection, only 5 needed to be patched
And, since these methods are infrequently modified the amount
of effort of this approach is minimal



Internal VM Native Code Taint Propagation
I Patch internal VM native code to update taint info
I 185 internal VM methods

I Only 5 needed to be patched
I Infrequently modified

23

To handle this case, the authors simply patched the internal VM
functions to correctly use and update the taint information
At the time of writing, there were 185 internal VM native
methods
After inspection, only 5 needed to be patched
And, since these methods are infrequently modified the amount
of effort of this approach is minimal



Internal VM Native Code Taint Propagation
I Patch internal VM native code to update taint info
I 185 internal VM methods
I Only 5 needed to be patched

I Infrequently modified

23

To handle this case, the authors simply patched the internal VM
functions to correctly use and update the taint information
At the time of writing, there were 185 internal VM native
methods
After inspection, only 5 needed to be patched
And, since these methods are infrequently modified the amount
of effort of this approach is minimal



Internal VM Native Code Taint Propagation
I Patch internal VM native code to update taint info
I 185 internal VM methods
I Only 5 needed to be patched
I Infrequently modified

23

To handle this case, the authors simply patched the internal VM
functions to correctly use and update the taint information
At the time of writing, there were 185 internal VM native
methods
After inspection, only 5 needed to be patched
And, since these methods are infrequently modified the amount
of effort of this approach is minimal



JNI Native Code Taint Propagation
I Java Native Interface Call Bridge

I Parses Java arguments
I Assigns return value

I Method Profile: list of 〈from, to〉

I writeFile(name, val)
I 〈from, to〉 = 〈val, name〉

I Issue: method profile creation is manual and time
consuming

24

Next, I’ll discuss how taint propagation occurs through native
code using the Java native interface
The Java native interface call bridge parses the Java level
arguments to be passed to native code and updates the return
value
The authors modified the java native interface call bridge to
correctly update the taint information of the return and class
fields
To do this, they consult a method profile for the native call
The method profile is a list of pairs indicating flows between
variables
For example, a native method writing to a file could be
summarized as the taint information from the value being
written flowing into the file
The issue with this is that the method profiles need to be
created manually
They leave the automatic creation of method profiles for future
work



JNI Native Code Taint Propagation
I Java Native Interface Call Bridge

I Parses Java arguments

I Assigns return value
I Method Profile: list of 〈from, to〉

I writeFile(name, val)
I 〈from, to〉 = 〈val, name〉

I Issue: method profile creation is manual and time
consuming

24

Next, I’ll discuss how taint propagation occurs through native
code using the Java native interface
The Java native interface call bridge parses the Java level
arguments to be passed to native code and updates the return
value
The authors modified the java native interface call bridge to
correctly update the taint information of the return and class
fields
To do this, they consult a method profile for the native call
The method profile is a list of pairs indicating flows between
variables
For example, a native method writing to a file could be
summarized as the taint information from the value being
written flowing into the file
The issue with this is that the method profiles need to be
created manually
They leave the automatic creation of method profiles for future
work



JNI Native Code Taint Propagation
I Java Native Interface Call Bridge

I Parses Java arguments
I Assigns return value

I Method Profile: list of 〈from, to〉

I writeFile(name, val)
I 〈from, to〉 = 〈val, name〉

I Issue: method profile creation is manual and time
consuming

24

Next, I’ll discuss how taint propagation occurs through native
code using the Java native interface
The Java native interface call bridge parses the Java level
arguments to be passed to native code and updates the return
value
The authors modified the java native interface call bridge to
correctly update the taint information of the return and class
fields
To do this, they consult a method profile for the native call
The method profile is a list of pairs indicating flows between
variables
For example, a native method writing to a file could be
summarized as the taint information from the value being
written flowing into the file
The issue with this is that the method profiles need to be
created manually
They leave the automatic creation of method profiles for future
work



JNI Native Code Taint Propagation
I Java Native Interface Call Bridge

I Parses Java arguments
I Assigns return value

I Method Profile: list of 〈from, to〉

I writeFile(name, val)
I 〈from, to〉 = 〈val, name〉

I Issue: method profile creation is manual and time
consuming

24

Next, I’ll discuss how taint propagation occurs through native
code using the Java native interface
The Java native interface call bridge parses the Java level
arguments to be passed to native code and updates the return
value
The authors modified the java native interface call bridge to
correctly update the taint information of the return and class
fields
To do this, they consult a method profile for the native call
The method profile is a list of pairs indicating flows between
variables
For example, a native method writing to a file could be
summarized as the taint information from the value being
written flowing into the file
The issue with this is that the method profiles need to be
created manually
They leave the automatic creation of method profiles for future
work



JNI Native Code Taint Propagation
I Java Native Interface Call Bridge

I Parses Java arguments
I Assigns return value

I Method Profile: list of 〈from, to〉
I writeFile(name, val)

I 〈from, to〉 = 〈val, name〉

I Issue: method profile creation is manual and time
consuming

24

Next, I’ll discuss how taint propagation occurs through native
code using the Java native interface
The Java native interface call bridge parses the Java level
arguments to be passed to native code and updates the return
value
The authors modified the java native interface call bridge to
correctly update the taint information of the return and class
fields
To do this, they consult a method profile for the native call
The method profile is a list of pairs indicating flows between
variables
For example, a native method writing to a file could be
summarized as the taint information from the value being
written flowing into the file
The issue with this is that the method profiles need to be
created manually
They leave the automatic creation of method profiles for future
work



JNI Native Code Taint Propagation
I Java Native Interface Call Bridge

I Parses Java arguments
I Assigns return value

I Method Profile: list of 〈from, to〉
I writeFile(name, val)
I 〈from, to〉 = 〈val, name〉

I Issue: method profile creation is manual and time
consuming

24

Next, I’ll discuss how taint propagation occurs through native
code using the Java native interface
The Java native interface call bridge parses the Java level
arguments to be passed to native code and updates the return
value
The authors modified the java native interface call bridge to
correctly update the taint information of the return and class
fields
To do this, they consult a method profile for the native call
The method profile is a list of pairs indicating flows between
variables
For example, a native method writing to a file could be
summarized as the taint information from the value being
written flowing into the file
The issue with this is that the method profiles need to be
created manually
They leave the automatic creation of method profiles for future
work



JNI Native Code Taint Propagation
I Java Native Interface Call Bridge

I Parses Java arguments
I Assigns return value

I Method Profile: list of 〈from, to〉
I writeFile(name, val)
I 〈from, to〉 = 〈val, name〉

I Issue: method profile creation is manual and time
consuming

24

Next, I’ll discuss how taint propagation occurs through native
code using the Java native interface
The Java native interface call bridge parses the Java level
arguments to be passed to native code and updates the return
value
The authors modified the java native interface call bridge to
correctly update the taint information of the return and class
fields
To do this, they consult a method profile for the native call
The method profile is a list of pairs indicating flows between
variables
For example, a native method writing to a file could be
summarized as the taint information from the value being
written flowing into the file
The issue with this is that the method profiles need to be
created manually
They leave the automatic creation of method profiles for future
work



IPC Taint Propagation
I Propagate taint information from send() to

receive()

I Tracked on message level
I Correctly propagates regardless of message use

I Parse an array of characters as a single string

I Aggregation leads to false alarms

thebloggerspost.wordpress 25

Next, we show how taint tags are propagated through IPC
communications
This amounts to connecting the taint information from the
location of a send in one application to a receive in another
As we’ve seen previously, we will again see a trade off between
accuracy and scalability
Similar to how arrays are handled, the taint information of a
message is aggregated into a single value
This approach is nice because it allows the taint information to
correctly propagate regardless as to how the sender and receiver
read and write the data
For example, the sender could aggregate an array of characters
which are parsed as a single string by the receiver
However, just like in the array case using a single taint tag in a
message can cause false alarms



IPC Taint Propagation
I Propagate taint information from send() to

receive()
I Tracked on message level

I Correctly propagates regardless of message use

I Parse an array of characters as a single string

I Aggregation leads to false alarms

thebloggerspost.wordpress 25

Next, we show how taint tags are propagated through IPC
communications
This amounts to connecting the taint information from the
location of a send in one application to a receive in another
As we’ve seen previously, we will again see a trade off between
accuracy and scalability
Similar to how arrays are handled, the taint information of a
message is aggregated into a single value
This approach is nice because it allows the taint information to
correctly propagate regardless as to how the sender and receiver
read and write the data
For example, the sender could aggregate an array of characters
which are parsed as a single string by the receiver
However, just like in the array case using a single taint tag in a
message can cause false alarms



IPC Taint Propagation
I Propagate taint information from send() to

receive()
I Tracked on message level
I Correctly propagates regardless of message use

I Parse an array of characters as a single string

I Aggregation leads to false alarms

thebloggerspost.wordpress 25

Next, we show how taint tags are propagated through IPC
communications
This amounts to connecting the taint information from the
location of a send in one application to a receive in another
As we’ve seen previously, we will again see a trade off between
accuracy and scalability
Similar to how arrays are handled, the taint information of a
message is aggregated into a single value
This approach is nice because it allows the taint information to
correctly propagate regardless as to how the sender and receiver
read and write the data
For example, the sender could aggregate an array of characters
which are parsed as a single string by the receiver
However, just like in the array case using a single taint tag in a
message can cause false alarms



IPC Taint Propagation
I Propagate taint information from send() to

receive()
I Tracked on message level
I Correctly propagates regardless of message use

I Parse an array of characters as a single string

I Aggregation leads to false alarms

thebloggerspost.wordpress 25

Next, we show how taint tags are propagated through IPC
communications
This amounts to connecting the taint information from the
location of a send in one application to a receive in another
As we’ve seen previously, we will again see a trade off between
accuracy and scalability
Similar to how arrays are handled, the taint information of a
message is aggregated into a single value
This approach is nice because it allows the taint information to
correctly propagate regardless as to how the sender and receiver
read and write the data
For example, the sender could aggregate an array of characters
which are parsed as a single string by the receiver
However, just like in the array case using a single taint tag in a
message can cause false alarms



IPC Taint Propagation
I Propagate taint information from send() to

receive()
I Tracked on message level
I Correctly propagates regardless of message use

I Parse an array of characters as a single string

I Aggregation leads to false alarms

thebloggerspost.wordpress 25

Next, we show how taint tags are propagated through IPC
communications
This amounts to connecting the taint information from the
location of a send in one application to a receive in another
As we’ve seen previously, we will again see a trade off between
accuracy and scalability
Similar to how arrays are handled, the taint information of a
message is aggregated into a single value
This approach is nice because it allows the taint information to
correctly propagate regardless as to how the sender and receiver
read and write the data
For example, the sender could aggregate an array of characters
which are parsed as a single string by the receiver
However, just like in the array case using a single taint tag in a
message can cause false alarms



File Taint Propegation
I Single tag per file
I Tainted write taints entire file

26

Finally, taint droid also propagates taint information through
file reads and writes.
By now, this probably sounds old hat but we’ll go over it anyway
Each file has a single taint tag
Similar to arrays, a tainted write to a file makes the entire file
tainted
As a result, subsequent reads of the file will be tainted even if
they do not actually read the tainted data.



Overview

Introduction

Background

TaintDroid
Example
Interpreted Code
Native Code
IPC
Files

Experiments

27

Next, I’ll go over their experimental evaluation



Experiments
I Analyzed 30 of most popular (2010) applications
I Needed to have suitable permissions

I Access private data (source)
I Access the internet (sink)

I Interesting results!

Innocuous permissions can expose private data

28

All in all, they analyzed 30 applications using TaintDroid
The applications were pulled from a list of the top 1,000
Android Market applications in 2010
They required the application have permissions suitable for
analysis.
In other words, the application must have had permission to
access some sensitive data, like the GPS, and also have access to
the internet
Network connection was required since the only sinks considered
were network sockets
The results found by the study, overall, were quite interesting
Two thirds of the applications have seemingly innocuous
permissions requested at install but lead to private data leaks



Experiments
I Analyzed 30 of most popular (2010) applications
I Needed to have suitable permissions

I Access private data (source)
I Access the internet (sink)

I Interesting results!

Innocuous permissions can expose private data

28

All in all, they analyzed 30 applications using TaintDroid
The applications were pulled from a list of the top 1,000
Android Market applications in 2010
They required the application have permissions suitable for
analysis.
In other words, the application must have had permission to
access some sensitive data, like the GPS, and also have access to
the internet
Network connection was required since the only sinks considered
were network sockets
The results found by the study, overall, were quite interesting
Two thirds of the applications have seemingly innocuous
permissions requested at install but lead to private data leaks



Data Monitoring

I Taint Droid running
I Application was
installed and manually
exercised

I Additional monitoring:
IPC messages, network
traffic

I Noted if application
asked for users consent

29

To conduct the experiments, they installed and used the
applications while taint droid was running
To provide an analysis of the results, the authors also monitored
the contents of network and IPC traffic
They also noted if the application ever asked for user conset to
send private data
An example of an application consenting to use private data is
as in this image
The application is asking the user if it is OK to use their location



Data Monitoring

testedich.de

30

Here, we can see a table containing all the applications used
Many of them are fairly widely known such as MySpace, The
Weather Channel, BBC News, and SpongeBob Slide
The four types of permissions are Location, Camera, Audio, and
Phone state
Phone state includes access to stuff like SIM card ID, phone
number, and other identifiers



Findings

I 2 applications sent out IMSI and geolocation
I 9 applications sent out IMEI
I 15 applications send location information to
advertisers

I Sent over both binary or plaintext

I Of 105 flagged alarms, 39 were deemed to be benign

31

Next, we’ll discuss the findings of analyzing these 30 applications
Out of the twenty applications accessing phone state, many sent
this information to external servers
They did not prompt the user to send such data
This shows the coarse grained permissions in android are not
sufficient
Two of the twenty applications sent out IMSI, a unique identifier
for a mobile subscriber, along with the geolocation of the user
The author theorizied IMSI was used as an identifier to build
information about a users
A phone’s IMEI uniquely identifiers the phone hardware.
9 applications sent out the IMEI over the network
7 of the 9 applications did not note IMEI harvesting in the
license agreement
15 of the 30 applications sent loation data to advertisers; only 2
out of the 15 noted this in the EULA
One of the advantages of taint droid is presented in this analysis.
Since taint droid works at the variable level, it can detect
location data transmitted both in binary and plaintext
This is more acurrate than a simple network monitoring
approach
Finally, of the 105 alarms generated by TaintDroid, 39 were
deemed benign after investigation
Many came from google maps using location data to download
maps



Findings
I 2 applications sent out IMSI and geolocation

I 9 applications sent out IMEI
I 15 applications send location information to
advertisers

I Sent over both binary or plaintext

I Of 105 flagged alarms, 39 were deemed to be benign

31

Next, we’ll discuss the findings of analyzing these 30 applications
Out of the twenty applications accessing phone state, many sent
this information to external servers
They did not prompt the user to send such data
This shows the coarse grained permissions in android are not
sufficient
Two of the twenty applications sent out IMSI, a unique identifier
for a mobile subscriber, along with the geolocation of the user
The author theorizied IMSI was used as an identifier to build
information about a users
A phone’s IMEI uniquely identifiers the phone hardware.
9 applications sent out the IMEI over the network
7 of the 9 applications did not note IMEI harvesting in the
license agreement
15 of the 30 applications sent loation data to advertisers; only 2
out of the 15 noted this in the EULA
One of the advantages of taint droid is presented in this analysis.
Since taint droid works at the variable level, it can detect
location data transmitted both in binary and plaintext
This is more acurrate than a simple network monitoring
approach
Finally, of the 105 alarms generated by TaintDroid, 39 were
deemed benign after investigation
Many came from google maps using location data to download
maps



Findings
I 2 applications sent out IMSI and geolocation
I 9 applications sent out IMEI

I 15 applications send location information to
advertisers

I Sent over both binary or plaintext

I Of 105 flagged alarms, 39 were deemed to be benign

31

Next, we’ll discuss the findings of analyzing these 30 applications
Out of the twenty applications accessing phone state, many sent
this information to external servers
They did not prompt the user to send such data
This shows the coarse grained permissions in android are not
sufficient
Two of the twenty applications sent out IMSI, a unique identifier
for a mobile subscriber, along with the geolocation of the user
The author theorizied IMSI was used as an identifier to build
information about a users
A phone’s IMEI uniquely identifiers the phone hardware.
9 applications sent out the IMEI over the network
7 of the 9 applications did not note IMEI harvesting in the
license agreement
15 of the 30 applications sent loation data to advertisers; only 2
out of the 15 noted this in the EULA
One of the advantages of taint droid is presented in this analysis.
Since taint droid works at the variable level, it can detect
location data transmitted both in binary and plaintext
This is more acurrate than a simple network monitoring
approach
Finally, of the 105 alarms generated by TaintDroid, 39 were
deemed benign after investigation
Many came from google maps using location data to download
maps



Findings
I 2 applications sent out IMSI and geolocation
I 9 applications sent out IMEI
I 15 applications send location information to
advertisers

I Sent over both binary or plaintext

I Of 105 flagged alarms, 39 were deemed to be benign

31

Next, we’ll discuss the findings of analyzing these 30 applications
Out of the twenty applications accessing phone state, many sent
this information to external servers
They did not prompt the user to send such data
This shows the coarse grained permissions in android are not
sufficient
Two of the twenty applications sent out IMSI, a unique identifier
for a mobile subscriber, along with the geolocation of the user
The author theorizied IMSI was used as an identifier to build
information about a users
A phone’s IMEI uniquely identifiers the phone hardware.
9 applications sent out the IMEI over the network
7 of the 9 applications did not note IMEI harvesting in the
license agreement
15 of the 30 applications sent loation data to advertisers; only 2
out of the 15 noted this in the EULA
One of the advantages of taint droid is presented in this analysis.
Since taint droid works at the variable level, it can detect
location data transmitted both in binary and plaintext
This is more acurrate than a simple network monitoring
approach
Finally, of the 105 alarms generated by TaintDroid, 39 were
deemed benign after investigation
Many came from google maps using location data to download
maps



Findings
I 2 applications sent out IMSI and geolocation
I 9 applications sent out IMEI
I 15 applications send location information to
advertisers

I Sent over both binary or plaintext

I Of 105 flagged alarms, 39 were deemed to be benign

31

Next, we’ll discuss the findings of analyzing these 30 applications
Out of the twenty applications accessing phone state, many sent
this information to external servers
They did not prompt the user to send such data
This shows the coarse grained permissions in android are not
sufficient
Two of the twenty applications sent out IMSI, a unique identifier
for a mobile subscriber, along with the geolocation of the user
The author theorizied IMSI was used as an identifier to build
information about a users
A phone’s IMEI uniquely identifiers the phone hardware.
9 applications sent out the IMEI over the network
7 of the 9 applications did not note IMEI harvesting in the
license agreement
15 of the 30 applications sent loation data to advertisers; only 2
out of the 15 noted this in the EULA
One of the advantages of taint droid is presented in this analysis.
Since taint droid works at the variable level, it can detect
location data transmitted both in binary and plaintext
This is more acurrate than a simple network monitoring
approach
Finally, of the 105 alarms generated by TaintDroid, 39 were
deemed benign after investigation
Many came from google maps using location data to download
maps



Findings
I 2 applications sent out IMSI and geolocation
I 9 applications sent out IMEI
I 15 applications send location information to
advertisers

I Sent over both binary or plaintext

I Of 105 flagged alarms, 39 were deemed to be benign

31

Next, we’ll discuss the findings of analyzing these 30 applications
Out of the twenty applications accessing phone state, many sent
this information to external servers
They did not prompt the user to send such data
This shows the coarse grained permissions in android are not
sufficient
Two of the twenty applications sent out IMSI, a unique identifier
for a mobile subscriber, along with the geolocation of the user
The author theorizied IMSI was used as an identifier to build
information about a users
A phone’s IMEI uniquely identifiers the phone hardware.
9 applications sent out the IMEI over the network
7 of the 9 applications did not note IMEI harvesting in the
license agreement
15 of the 30 applications sent loation data to advertisers; only 2
out of the 15 noted this in the EULA
One of the advantages of taint droid is presented in this analysis.
Since taint droid works at the variable level, it can detect
location data transmitted both in binary and plaintext
This is more acurrate than a simple network monitoring
approach
Finally, of the 105 alarms generated by TaintDroid, 39 were
deemed benign after investigation
Many came from google maps using location data to download
maps



Performance Evaluations
I Nexus One with Android 2.1

I Overhead was fairly low:

I Most applications are just waiting for the user
I Complex code is in native libraries

32

Next, we look at the performance costs of using TaintDroid
Overall, the overhead was fairly low
The authors believe this ocurred since most applications are just
waiting for the user to do something, and that most of the
complex code, such as screen rendering, is in native libraries
The authors created a few macro benchmarks performing some
tasks like reading/writing to the address book, making a phone
call, or taking pictures
The most overhead was 29% for the picture
The authors note that this ocurrs due to the overhead from
additional file write operations for tainted data



Performance Evaluations
I Nexus One with Android 2.1
I Overhead was fairly low:

I Most applications are just waiting for the user
I Complex code is in native libraries

32

Next, we look at the performance costs of using TaintDroid
Overall, the overhead was fairly low
The authors believe this ocurred since most applications are just
waiting for the user to do something, and that most of the
complex code, such as screen rendering, is in native libraries
The authors created a few macro benchmarks performing some
tasks like reading/writing to the address book, making a phone
call, or taking pictures
The most overhead was 29% for the picture
The authors note that this ocurrs due to the overhead from
additional file write operations for tainted data



Performance Evaluations
I Nexus One with Android 2.1
I Overhead was fairly low:

I Most applications are just waiting for the user

I Complex code is in native libraries

32

Next, we look at the performance costs of using TaintDroid
Overall, the overhead was fairly low
The authors believe this ocurred since most applications are just
waiting for the user to do something, and that most of the
complex code, such as screen rendering, is in native libraries
The authors created a few macro benchmarks performing some
tasks like reading/writing to the address book, making a phone
call, or taking pictures
The most overhead was 29% for the picture
The authors note that this ocurrs due to the overhead from
additional file write operations for tainted data



Performance Evaluations
I Nexus One with Android 2.1
I Overhead was fairly low:

I Most applications are just waiting for the user
I Complex code is in native libraries

32

Next, we look at the performance costs of using TaintDroid
Overall, the overhead was fairly low
The authors believe this ocurred since most applications are just
waiting for the user to do something, and that most of the
complex code, such as screen rendering, is in native libraries
The authors created a few macro benchmarks performing some
tasks like reading/writing to the address book, making a phone
call, or taking pictures
The most overhead was 29% for the picture
The authors note that this ocurrs due to the overhead from
additional file write operations for tainted data



Performance Evaluations
I Nexus One with Android 2.1
I Overhead was fairly low:

I Most applications are just waiting for the user
I Complex code is in native libraries

32

Next, we look at the performance costs of using TaintDroid
Overall, the overhead was fairly low
The authors believe this ocurred since most applications are just
waiting for the user to do something, and that most of the
complex code, such as screen rendering, is in native libraries
The authors created a few macro benchmarks performing some
tasks like reading/writing to the address book, making a phone
call, or taking pictures
The most overhead was 29% for the picture
The authors note that this ocurrs due to the overhead from
additional file write operations for tainted data



Performance Evaluations
I Nexus One with Android 2.1
I Overhead was fairly low:

I Most applications are just waiting for the user
I Complex code is in native libraries

32

Next, we look at the performance costs of using TaintDroid
Overall, the overhead was fairly low
The authors believe this ocurred since most applications are just
waiting for the user to do something, and that most of the
complex code, such as screen rendering, is in native libraries
The authors created a few macro benchmarks performing some
tasks like reading/writing to the address book, making a phone
call, or taking pictures
The most overhead was 29% for the picture
The authors note that this ocurrs due to the overhead from
additional file write operations for tainted data



Microbenchmark: CaffineMark3.0

33

Next, the authors tested taint droid on a Java microbenchmark
called CaffeineMark
CaffineMark has its own relative scoring metric which rougly
corresponds to the number of instructions per second
TaintDroid, as expected, as small overhead for those involving
arithmetic
These cases are simple for taint droid since they only involve
single spatially located taint tags for local variables
Overall, the overhead was about 14% for TaintDroid
The memory overhead as 4.4%



IPC Overhead

34

Next, the authors tested the IPC overhead of TaintDroid
To do this, they created a client–service microbenchmark where
the client requests the service to update some data
They repeated this many many times and checked the overhead
Overall, both the time and space overheads are pretty small
The test was 27% slower and used 3.5% more memory



Conclusion
I Efficient, system-wide, dynamic taint tracking

I Simultaneously track multiple taint sources
I Low time and space overhead
I Android permissions are too coarse

Questions?

35

In conclusion, the authors presented taint droid, an efficient
system wide dynamic taint tracking implementation
Their method allows for multiple taint sources to be tracked
simultaneously
Experimental results show that it has a low time and space
overhead
And, by analyzing popular applications they showed that
android permissions may be too coarse to provide adequet
privacy.



Conclusion
I Efficient, system-wide, dynamic taint tracking
I Simultaneously track multiple taint sources

I Low time and space overhead
I Android permissions are too coarse

Questions?

35

In conclusion, the authors presented taint droid, an efficient
system wide dynamic taint tracking implementation
Their method allows for multiple taint sources to be tracked
simultaneously
Experimental results show that it has a low time and space
overhead
And, by analyzing popular applications they showed that
android permissions may be too coarse to provide adequet
privacy.



Conclusion
I Efficient, system-wide, dynamic taint tracking
I Simultaneously track multiple taint sources
I Low time and space overhead

I Android permissions are too coarse

Questions?

35

In conclusion, the authors presented taint droid, an efficient
system wide dynamic taint tracking implementation
Their method allows for multiple taint sources to be tracked
simultaneously
Experimental results show that it has a low time and space
overhead
And, by analyzing popular applications they showed that
android permissions may be too coarse to provide adequet
privacy.



Conclusion
I Efficient, system-wide, dynamic taint tracking
I Simultaneously track multiple taint sources
I Low time and space overhead
I Android permissions are too coarse

Questions?

35

In conclusion, the authors presented taint droid, an efficient
system wide dynamic taint tracking implementation
Their method allows for multiple taint sources to be tracked
simultaneously
Experimental results show that it has a low time and space
overhead
And, by analyzing popular applications they showed that
android permissions may be too coarse to provide adequet
privacy.



Conclusion
I Efficient, system-wide, dynamic taint tracking
I Simultaneously track multiple taint sources
I Low time and space overhead
I Android permissions are too coarse

Questions?

35

In conclusion, the authors presented taint droid, an efficient
system wide dynamic taint tracking implementation
Their method allows for multiple taint sources to be tracked
simultaneously
Experimental results show that it has a low time and space
overhead
And, by analyzing popular applications they showed that
android permissions may be too coarse to provide adequet
privacy.



Conclusion
I Efficient, system-wide, dynamic taint tracking
I Simultaneously track multiple taint sources
I Low time and space overhead
I Android permissions are too coarse

Questions?

35

In conclusion, the authors presented taint droid, an efficient
system wide dynamic taint tracking implementation
Their method allows for multiple taint sources to be tracked
simultaneously
Experimental results show that it has a low time and space
overhead
And, by analyzing popular applications they showed that
android permissions may be too coarse to provide adequet
privacy.



Discussion
I Does not track implicit flows

I Does not track taint information returning through
the network

I Taint-tracking granularities lead to false positive

I E.g., Tainted information stored with non-tainted
information

36

Finally, we discuss some of the good and bad of taint droid
First, TaintDroid does not follow implicit flows, i.e., those
through control
We had an example of this earlier in the semester where an
information leak could ocurr through open or closing the CD
drive
Next, taint droid does not track taint information traveling
through the network.
In this way, the attacker could send tainted data over the
network and Taint Droid would miss the taint propegation from
a network read of the same value
Finally, the authors note that when taint information is stored
with un-tainted, commonly used values many false alarms can be
generted
For example, a single string contains a sensitive value along with
other non-sensitive data



Discussion
I Does not track implicit flows
I Does not track taint information returning through
the network

I Taint-tracking granularities lead to false positive

I E.g., Tainted information stored with non-tainted
information

36

Finally, we discuss some of the good and bad of taint droid
First, TaintDroid does not follow implicit flows, i.e., those
through control
We had an example of this earlier in the semester where an
information leak could ocurr through open or closing the CD
drive
Next, taint droid does not track taint information traveling
through the network.
In this way, the attacker could send tainted data over the
network and Taint Droid would miss the taint propegation from
a network read of the same value
Finally, the authors note that when taint information is stored
with un-tainted, commonly used values many false alarms can be
generted
For example, a single string contains a sensitive value along with
other non-sensitive data



Discussion
I Does not track implicit flows
I Does not track taint information returning through
the network

I Taint-tracking granularities lead to false positive

I E.g., Tainted information stored with non-tainted
information

36

Finally, we discuss some of the good and bad of taint droid
First, TaintDroid does not follow implicit flows, i.e., those
through control
We had an example of this earlier in the semester where an
information leak could ocurr through open or closing the CD
drive
Next, taint droid does not track taint information traveling
through the network.
In this way, the attacker could send tainted data over the
network and Taint Droid would miss the taint propegation from
a network read of the same value
Finally, the authors note that when taint information is stored
with un-tainted, commonly used values many false alarms can be
generted
For example, a single string contains a sensitive value along with
other non-sensitive data



Discussion
I Does not track implicit flows
I Does not track taint information returning through
the network

I Taint-tracking granularities lead to false positive
I E.g., Tainted information stored with non-tainted

information

36

Finally, we discuss some of the good and bad of taint droid
First, TaintDroid does not follow implicit flows, i.e., those
through control
We had an example of this earlier in the semester where an
information leak could ocurr through open or closing the CD
drive
Next, taint droid does not track taint information traveling
through the network.
In this way, the attacker could send tainted data over the
network and Taint Droid would miss the taint propegation from
a network read of the same value
Finally, the authors note that when taint information is stored
with un-tainted, commonly used values many false alarms can be
generted
For example, a single string contains a sensitive value along with
other non-sensitive data



Security Concerns
I Trusted Code Base:

Virtual Machine
Native Code Libraries (.so files)

I Only way to escape VM is through native code
I Prevent third-party applications from using their
own .so files

Sleeping While on Duty (wikipedia)

37

Next, I’ll discuss their security assumptions
They assume the virtual machine and native code libraries are
trusted
The third-party applications are confined to the VM for most of
their operation.
As a result, the third-party application cannot attack their taint
tracker in Java mode
But, through Native code they could potentially do malicious
things to the running VM
To handle this, they prevent third-party libraries from executing
non-system native code



Taint Interface Library
I addTaint()

I Can only add taint markings to variables
I No arbitrary sets
I Taint sources are identified by user and
automatically instrumented

I SMS databases
I Sensors (microphone, GPS)
I Device identifiers

I Sinks: network socket

38

Finally, we get to how the taint tracking library can be used
The developer passes a variable to a certain addTaint function
which updates the taint tag associated with the variable
This value is then propagated using the rules we previously
described
They do not allow arbitrary sets of taint values since the
function is called in an untrusted environment
In other words, you can only taint a value in the untrusted Java
environment and not un-taint it
Taint sources are identified by the user and then automatically
instrumented
Some taint sources include SMS databases, sensors, and device
identifiers like phone number, or SIM card ID
For sinks, they used network sockets



Taint Interface Library
I addTaint()
I Can only add taint markings to variables

I No arbitrary sets
I Taint sources are identified by user and
automatically instrumented

I SMS databases
I Sensors (microphone, GPS)
I Device identifiers

I Sinks: network socket

38

Finally, we get to how the taint tracking library can be used
The developer passes a variable to a certain addTaint function
which updates the taint tag associated with the variable
This value is then propagated using the rules we previously
described
They do not allow arbitrary sets of taint values since the
function is called in an untrusted environment
In other words, you can only taint a value in the untrusted Java
environment and not un-taint it
Taint sources are identified by the user and then automatically
instrumented
Some taint sources include SMS databases, sensors, and device
identifiers like phone number, or SIM card ID
For sinks, they used network sockets



Taint Interface Library
I addTaint()
I Can only add taint markings to variables
I No arbitrary sets

I Taint sources are identified by user and
automatically instrumented

I SMS databases
I Sensors (microphone, GPS)
I Device identifiers

I Sinks: network socket

38

Finally, we get to how the taint tracking library can be used
The developer passes a variable to a certain addTaint function
which updates the taint tag associated with the variable
This value is then propagated using the rules we previously
described
They do not allow arbitrary sets of taint values since the
function is called in an untrusted environment
In other words, you can only taint a value in the untrusted Java
environment and not un-taint it
Taint sources are identified by the user and then automatically
instrumented
Some taint sources include SMS databases, sensors, and device
identifiers like phone number, or SIM card ID
For sinks, they used network sockets



Taint Interface Library
I addTaint()
I Can only add taint markings to variables
I No arbitrary sets
I Taint sources are identified by user and
automatically instrumented

I SMS databases
I Sensors (microphone, GPS)
I Device identifiers

I Sinks: network socket

38

Finally, we get to how the taint tracking library can be used
The developer passes a variable to a certain addTaint function
which updates the taint tag associated with the variable
This value is then propagated using the rules we previously
described
They do not allow arbitrary sets of taint values since the
function is called in an untrusted environment
In other words, you can only taint a value in the untrusted Java
environment and not un-taint it
Taint sources are identified by the user and then automatically
instrumented
Some taint sources include SMS databases, sensors, and device
identifiers like phone number, or SIM card ID
For sinks, they used network sockets



Taint Interface Library
I addTaint()
I Can only add taint markings to variables
I No arbitrary sets
I Taint sources are identified by user and
automatically instrumented

I SMS databases

I Sensors (microphone, GPS)
I Device identifiers

I Sinks: network socket

38

Finally, we get to how the taint tracking library can be used
The developer passes a variable to a certain addTaint function
which updates the taint tag associated with the variable
This value is then propagated using the rules we previously
described
They do not allow arbitrary sets of taint values since the
function is called in an untrusted environment
In other words, you can only taint a value in the untrusted Java
environment and not un-taint it
Taint sources are identified by the user and then automatically
instrumented
Some taint sources include SMS databases, sensors, and device
identifiers like phone number, or SIM card ID
For sinks, they used network sockets



Taint Interface Library
I addTaint()
I Can only add taint markings to variables
I No arbitrary sets
I Taint sources are identified by user and
automatically instrumented

I SMS databases
I Sensors (microphone, GPS)

I Device identifiers

I Sinks: network socket

38

Finally, we get to how the taint tracking library can be used
The developer passes a variable to a certain addTaint function
which updates the taint tag associated with the variable
This value is then propagated using the rules we previously
described
They do not allow arbitrary sets of taint values since the
function is called in an untrusted environment
In other words, you can only taint a value in the untrusted Java
environment and not un-taint it
Taint sources are identified by the user and then automatically
instrumented
Some taint sources include SMS databases, sensors, and device
identifiers like phone number, or SIM card ID
For sinks, they used network sockets



Taint Interface Library
I addTaint()
I Can only add taint markings to variables
I No arbitrary sets
I Taint sources are identified by user and
automatically instrumented

I SMS databases
I Sensors (microphone, GPS)
I Device identifiers

I Sinks: network socket

38

Finally, we get to how the taint tracking library can be used
The developer passes a variable to a certain addTaint function
which updates the taint tag associated with the variable
This value is then propagated using the rules we previously
described
They do not allow arbitrary sets of taint values since the
function is called in an untrusted environment
In other words, you can only taint a value in the untrusted Java
environment and not un-taint it
Taint sources are identified by the user and then automatically
instrumented
Some taint sources include SMS databases, sensors, and device
identifiers like phone number, or SIM card ID
For sinks, they used network sockets



Taint Interface Library
I addTaint()
I Can only add taint markings to variables
I No arbitrary sets
I Taint sources are identified by user and
automatically instrumented

I SMS databases
I Sensors (microphone, GPS)
I Device identifiers

I Sinks: network socket

38

Finally, we get to how the taint tracking library can be used
The developer passes a variable to a certain addTaint function
which updates the taint tag associated with the variable
This value is then propagated using the rules we previously
described
They do not allow arbitrary sets of taint values since the
function is called in an untrusted environment
In other words, you can only taint a value in the untrusted Java
environment and not un-taint it
Taint sources are identified by the user and then automatically
instrumented
Some taint sources include SMS databases, sensors, and device
identifiers like phone number, or SIM card ID
For sinks, they used network sockets


	Introduction
	Background
	TaintDroid
	Example
	Interpreted Code
	Native Code
	IPC
	Files

	Experiments

