
Static Control-Flow Analysis of
User-Driven Callbacks in Android

Applications
ICSE’15

Shengqian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas Rountev Ohio
State University

Presenter: Zheng Song

About the authors

• Shengqian Yang: PhD student since 2010.

• Dacong Yan, Phd 2009~2014, now at Google

• Haowei Wu, Phd student since 2013

• Yan Wang, …

• Atanas Rountev Ohio: h-index 30
• 1995-2002 PhD from Rutgers University
• OSU since then, now holds a professor position.

Program Analyses and Software Tools (PRESTO) Research Group

Key Contributions

• 1. User-driven callbacks (lifecycle & event handler)
• Traditional analyses cannot fit Android, framework-based and event-driven.

• We consider user-event driven components and the related sequences of
callbacks from the Android framework to the application code, [both for
lifecycle callbacks and for event handler callbacks]

• 2. a program representation to capture such callback sequences.
• using context sensitive static analysis of callback methods.

Q: Context-sensitive??? (context-sensitive point-to analysis…)

Class-sensitive point-to analysis:
Encapsulation

x1 O1 O2 x2

y1 O3

y2 O4

f

x

this

f

f

f

Class-sensitive point-to analysis:
Inheritance

y O1 O2 z

b O3

B.xb

A.xa

this

f

f

f

O4 c

C.xc

f

Outline

• 1. Introduction & definations

• 2. Example

• 3. Algorithm

• 4. Usage

• 5. Evaluation

• 6. Discussion

1. Introduction and Definations

• Android CallBacks: Don’t call us, we’ll call you

calls from the platform’s event processing code to the relevant callback
methods defined in the application code.

Q: lifecycle callbacks; user event handler; other callbacks?

1. Introduction:

• Procedure:

• 1. In essence, the control flow analysis problem can be reduced to
modeling of the possible sequences of callbacks.

• 2. captures such callback sequences as callback control-flow graph (CCFG)
[The analysis of each callback method (and the code transitively invoked by
it) determines what other callbacks may be triggered next.]

• technical insight: a callback method must be analyzed separately for
different invocation contexts associated with it =>context sensitivity

• Why is useful: the automated generation of static GUI models

1. Definition:

• 1. CFG, ICFG, CCFG

• 2. The CFG for a procedure p has a dedicated start node sp and a dedicated exit node ep. Each call is
represented by two nodes: a call-site node ci and a return-site node ri. There is an interprocedural

•
edge ci→sp from a call-site node to the start node of the called procedure p; there is also a corresponding
edge ep → ri.

• Thus, the abstracted controlflow paths are always of the form ci → smi, emi → ri, cj →smj , emj → rj, ck →
smk, emk → rk, . . . and will be represented simply as mi mj mk . . . where mi is the callbackmethod invoked
by c

• set L of lifecycle methods for activities, dialogs, and menus, as well as set H of GUI event handler methods.

2. Motivating Example

3. Algorithm

• 1. Control-flow analysis of a callback method:
• To indicate that event handlers could be executed in any order, branch nodes bi and join nodes ji are introduced,

together with edges ji → bi.

•

3. Algorithm

• 2. CCFG Construction

4. Usage

5. Evaluation

• (1) characterize the size and complexity of the CCFG,

• (2) measure the benefits of context sensitivity in the analysis of event
handlers,

• (3) evaluate the precision of the GUI models derived from the CCFG.

Questions:

• 1. Why cannot such method be used in onNewLocation?

• 2. What’s the strength of this paper? The weakness?

• 3. About the writing pattern

