
DART: Directed Automated Random

Testing
PLDI 2005

Patrice Godefroid1 Nils Klarlund1 Koushik Sen2

1Bell Laboratories, Lucent Technologies

2University of Illinois at Urbana-Champaign

November 10, 2015

Presented by Markus

1/20

Introduction

I Testing makes up 50% of software development cost

I Failures cost $60 billion per year in USA alone

I Software testing is important

I Software testing is. . .

I Hard
I Boring
I Tedious

I Automated techniques

http://vignette4.wikia.nocookie.net/spongebob/images/9/9f/Money Krabs CS.jpg

2/20

• Overall, testing makes up around fifty percent of the cost of
developing software

• Complementing this is the fact that software failures in the USA cost
around 60 billion dollars per year

• So, because people like money, software testing is important in order
to both reduce the testing cost and prevent costly failures

• But, software testing, from a developers standpoint, is also hard,
boring, and tedious

• Because of this, techniques to automatically test a program can help
reduce developer burden and costs

Introduction

I Testing makes up 50% of software development cost

I Failures cost $60 billion per year in USA alone

I Software testing is important

I Software testing is. . .

I Hard
I Boring
I Tedious

I Automated techniques

http://vignette4.wikia.nocookie.net/spongebob/images/9/9f/Money Krabs CS.jpg

2/20

• Overall, testing makes up around fifty percent of the cost of
developing software

• Complementing this is the fact that software failures in the USA cost
around 60 billion dollars per year

• So, because people like money, software testing is important in order
to both reduce the testing cost and prevent costly failures

• But, software testing, from a developers standpoint, is also hard,
boring, and tedious

• Because of this, techniques to automatically test a program can help
reduce developer burden and costs

Introduction

I Testing makes up 50% of software development cost

I Failures cost $60 billion per year in USA alone

I Software testing is important

I Software testing is. . .

I Hard
I Boring
I Tedious

I Automated techniques

http://vignette4.wikia.nocookie.net/spongebob/images/9/9f/Money Krabs CS.jpg

2/20

• Overall, testing makes up around fifty percent of the cost of
developing software

• Complementing this is the fact that software failures in the USA cost
around 60 billion dollars per year

• So, because people like money, software testing is important in order
to both reduce the testing cost and prevent costly failures

• But, software testing, from a developers standpoint, is also hard,
boring, and tedious

• Because of this, techniques to automatically test a program can help
reduce developer burden and costs

Introduction

I Testing makes up 50% of software development cost

I Failures cost $60 billion per year in USA alone

I Software testing is important

I Software testing is. . .

I Hard
I Boring
I Tedious

I Automated techniques

http://vignette4.wikia.nocookie.net/spongebob/images/9/9f/Money Krabs CS.jpg

2/20

• Overall, testing makes up around fifty percent of the cost of
developing software

• Complementing this is the fact that software failures in the USA cost
around 60 billion dollars per year

• So, because people like money, software testing is important in order
to both reduce the testing cost and prevent costly failures

• But, software testing, from a developers standpoint, is also hard,
boring, and tedious

• Because of this, techniques to automatically test a program can help
reduce developer burden and costs

Introduction

I Testing makes up 50% of software development cost

I Failures cost $60 billion per year in USA alone

I Software testing is important

I Software testing is. . .
I Hard

I Boring
I Tedious

I Automated techniques

http://vignette4.wikia.nocookie.net/spongebob/images/9/9f/Money Krabs CS.jpg

2/20

• Overall, testing makes up around fifty percent of the cost of
developing software

• Complementing this is the fact that software failures in the USA cost
around 60 billion dollars per year

• So, because people like money, software testing is important in order
to both reduce the testing cost and prevent costly failures

• But, software testing, from a developers standpoint, is also hard,
boring, and tedious

• Because of this, techniques to automatically test a program can help
reduce developer burden and costs

Introduction

I Testing makes up 50% of software development cost

I Failures cost $60 billion per year in USA alone

I Software testing is important

I Software testing is. . .
I Hard
I Boring

I Tedious

I Automated techniques

http://vignette4.wikia.nocookie.net/spongebob/images/9/9f/Money Krabs CS.jpg

2/20

• Overall, testing makes up around fifty percent of the cost of
developing software

• Complementing this is the fact that software failures in the USA cost
around 60 billion dollars per year

• So, because people like money, software testing is important in order
to both reduce the testing cost and prevent costly failures

• But, software testing, from a developers standpoint, is also hard,
boring, and tedious

• Because of this, techniques to automatically test a program can help
reduce developer burden and costs

Introduction

I Testing makes up 50% of software development cost

I Failures cost $60 billion per year in USA alone

I Software testing is important

I Software testing is. . .
I Hard
I Boring
I Tedious

I Automated techniques

http://vignette4.wikia.nocookie.net/spongebob/images/9/9f/Money Krabs CS.jpg

2/20

• Overall, testing makes up around fifty percent of the cost of
developing software

• Complementing this is the fact that software failures in the USA cost
around 60 billion dollars per year

• So, because people like money, software testing is important in order
to both reduce the testing cost and prevent costly failures

• But, software testing, from a developers standpoint, is also hard,
boring, and tedious

• Because of this, techniques to automatically test a program can help
reduce developer burden and costs

Introduction

I Testing makes up 50% of software development cost

I Failures cost $60 billion per year in USA alone

I Software testing is important

I Software testing is. . .
I Hard
I Boring
I Tedious

I Automated techniques

http://vignette4.wikia.nocookie.net/spongebob/images/9/9f/Money Krabs CS.jpg

2/20

• Overall, testing makes up around fifty percent of the cost of
developing software

• Complementing this is the fact that software failures in the USA cost
around 60 billion dollars per year

• So, because people like money, software testing is important in order
to both reduce the testing cost and prevent costly failures

• But, software testing, from a developers standpoint, is also hard,
boring, and tedious

• Because of this, techniques to automatically test a program can help
reduce developer burden and costs

Introduction

1 int mul2(int x) {

2 return 2 * x;

3 }

4 int h(int x, int y) {

5 if (x != y) {

6 if (mul2(x) == x + 10) {

7 abort();

8 }

9 }

I Automated random testing

I Hard to guess
constraints (x == 10)

I Directed random testing

I Specify reachability as
constraints

3/20

• To better illustrate why program testing is hard, and the difficulties
with current automated techniques, we’ll look at this example
program

• Here, we have the function h which we would like to to test. We’ve
encoded an error statement in h using the abort statement

• There are two conditions guarding the reachability of the abort
statement: x must not be equal to y and the result of calling mul2
on x must be equal to x + 10

• Random testing is one automated testing technique: it simply applies
random inputs to the function under test with hopes to execute
different paths

• Random testing is good since it requires very low overhead but it
often has difficulty exercising new paths within the program

• Specifically, if we examine look at a condition such as x equal to 10,
with 32 bit integers there is a 232 chance to guess this correctly

• Obviously, with such a low probability, random testing will likely end
up having low coverage on this function

• An alternative approach is to use what the authors refer to as
directed testing

• In this way, the inputs required to reach a specific point in the
program are specified as a set of constraints who’s satisfiability
represent inputs to reach a certain location

Introduction

1 int mul2(int x) {

2 return 2 * x;

3 }

4 int h(int x, int y) {

5 if (x != y) {

6 if (mul2(x) == x + 10) {

7 abort();

8 }

9 }

I Automated random testing

I Hard to guess
constraints (x == 10)

I Directed random testing

I Specify reachability as
constraints

3/20

• To better illustrate why program testing is hard, and the difficulties
with current automated techniques, we’ll look at this example
program

• Here, we have the function h which we would like to to test. We’ve
encoded an error statement in h using the abort statement

• There are two conditions guarding the reachability of the abort
statement: x must not be equal to y and the result of calling mul2
on x must be equal to x + 10

• Random testing is one automated testing technique: it simply applies
random inputs to the function under test with hopes to execute
different paths

• Random testing is good since it requires very low overhead but it
often has difficulty exercising new paths within the program

• Specifically, if we examine look at a condition such as x equal to 10,
with 32 bit integers there is a 232 chance to guess this correctly

• Obviously, with such a low probability, random testing will likely end
up having low coverage on this function

• An alternative approach is to use what the authors refer to as
directed testing

• In this way, the inputs required to reach a specific point in the
program are specified as a set of constraints who’s satisfiability
represent inputs to reach a certain location

Introduction

1 int mul2(int x) {

2 return 2 * x;

3 }

4 int h(int x, int y) {

5 if (x != y) {

6 if (mul2(x) == x + 10) {

7 abort();

8 }

9 }

I Automated random testing

I Hard to guess
constraints (x == 10)

I Directed random testing

I Specify reachability as
constraints

3/20

• To better illustrate why program testing is hard, and the difficulties
with current automated techniques, we’ll look at this example
program

• Here, we have the function h which we would like to to test. We’ve
encoded an error statement in h using the abort statement

• There are two conditions guarding the reachability of the abort
statement: x must not be equal to y and the result of calling mul2
on x must be equal to x + 10

• Random testing is one automated testing technique: it simply applies
random inputs to the function under test with hopes to execute
different paths

• Random testing is good since it requires very low overhead but it
often has difficulty exercising new paths within the program

• Specifically, if we examine look at a condition such as x equal to 10,
with 32 bit integers there is a 232 chance to guess this correctly

• Obviously, with such a low probability, random testing will likely end
up having low coverage on this function

• An alternative approach is to use what the authors refer to as
directed testing

• In this way, the inputs required to reach a specific point in the
program are specified as a set of constraints who’s satisfiability
represent inputs to reach a certain location

Introduction

1 int mul2(int x) {

2 return 2 * x;

3 }

4 int h(int x, int y) {

5 if (x != y) {

6 if (mul2(x) == x + 10) {

7 abort();

8 }

9 }

I Automated random testing

I Hard to guess
constraints (x == 10)

I Directed random testing
I Specify reachability as

constraints

3/20

• To better illustrate why program testing is hard, and the difficulties
with current automated techniques, we’ll look at this example
program

• Here, we have the function h which we would like to to test. We’ve
encoded an error statement in h using the abort statement

• There are two conditions guarding the reachability of the abort
statement: x must not be equal to y and the result of calling mul2
on x must be equal to x + 10

• Random testing is one automated testing technique: it simply applies
random inputs to the function under test with hopes to execute
different paths

• Random testing is good since it requires very low overhead but it
often has difficulty exercising new paths within the program

• Specifically, if we examine look at a condition such as x equal to 10,
with 32 bit integers there is a 232 chance to guess this correctly

• Obviously, with such a low probability, random testing will likely end
up having low coverage on this function

• An alternative approach is to use what the authors refer to as
directed testing

• In this way, the inputs required to reach a specific point in the
program are specified as a set of constraints who’s satisfiability
represent inputs to reach a certain location

Introduction

1 int mul2(int x) {

2 return 2 * x;

3 }

4 int h(int x, int y) {

5 if (x != y) {

6 if (mul2(x) == x + 10) {

7 abort();

8 }

9 }

I Input One:
x = 20, y = 1000

I Second branch not
taken: 40 6= 20 + 10

I Path constraint:
(x 6= y) ∧ (2x 6= x + 10)

I Direct tester to new paths

I Alter path constraint &
solve

I New constraint:
(x 6= y) ∧ (2x=x + 10)

I x = 10 ∧ y = 1000

4/20

• To better understand this concept of directed testing, we’ll continue
looking at this example

• Consider we randomly generate the following inputs to h: x equal to
20 and y equal to 1000

• With this input, the first branch, x not equal to y, will be taken, but
the second one will not since the result of mul2 returns 40 and 40 is
not equal to 30

• Given this programs execution, we can capture its path constraint:
the path constraint is a logical formula capturing all program inputs
resulting in the same path

• Specifically, this path constraint specifies that x is not equal to y and
2x is not equal to x + 10: intuitively, we can see these conditions
represent the first branch being taken and the second one not being
taken

• Since our goal is to increase testing coverage of the function, we’d
like to direct the tester to explore a new path through the function

• To do this, we can negate the last condition in the previous
constraint, in other words, try to find an input to satisfy the first and
second branch conditions

• Passing this equation to a solver, we can get a solution that x equals
10 and y equals 1000 which are valid inputs to reach the abort
statement and find the bug

Introduction

1 int mul2(int x) {

2 return 2 * x;

3 }

4 int h(int x, int y) {

5 if (x != y) {

6 if (mul2(x) == x + 10) {

7 abort();

8 }

9 }

I Input One:
x = 20, y = 1000

I Second branch not
taken: 40 6= 20 + 10

I Path constraint:
(x 6= y) ∧ (2x 6= x + 10)

I Direct tester to new paths

I Alter path constraint &
solve

I New constraint:
(x 6= y) ∧ (2x=x + 10)

I x = 10 ∧ y = 1000

4/20

• To better understand this concept of directed testing, we’ll continue
looking at this example

• Consider we randomly generate the following inputs to h: x equal to
20 and y equal to 1000

• With this input, the first branch, x not equal to y, will be taken, but
the second one will not since the result of mul2 returns 40 and 40 is
not equal to 30

• Given this programs execution, we can capture its path constraint:
the path constraint is a logical formula capturing all program inputs
resulting in the same path

• Specifically, this path constraint specifies that x is not equal to y and
2x is not equal to x + 10: intuitively, we can see these conditions
represent the first branch being taken and the second one not being
taken

• Since our goal is to increase testing coverage of the function, we’d
like to direct the tester to explore a new path through the function

• To do this, we can negate the last condition in the previous
constraint, in other words, try to find an input to satisfy the first and
second branch conditions

• Passing this equation to a solver, we can get a solution that x equals
10 and y equals 1000 which are valid inputs to reach the abort
statement and find the bug

Introduction

1 int mul2(int x) {

2 return 2 * x;

3 }

4 int h(int x, int y) {

5 if (x != y) {

6 if (mul2(x) == x + 10) {

7 abort();

8 }

9 }

I Input One:
x = 20, y = 1000

I Second branch not
taken: 40 6= 20 + 10

I Path constraint:
(x 6= y) ∧ (2x 6= x + 10)

I Direct tester to new paths

I Alter path constraint &
solve

I New constraint:
(x 6= y) ∧ (2x=x + 10)

I x = 10 ∧ y = 1000

4/20

• To better understand this concept of directed testing, we’ll continue
looking at this example

• Consider we randomly generate the following inputs to h: x equal to
20 and y equal to 1000

• With this input, the first branch, x not equal to y, will be taken, but
the second one will not since the result of mul2 returns 40 and 40 is
not equal to 30

• Given this programs execution, we can capture its path constraint:
the path constraint is a logical formula capturing all program inputs
resulting in the same path

• Specifically, this path constraint specifies that x is not equal to y and
2x is not equal to x + 10: intuitively, we can see these conditions
represent the first branch being taken and the second one not being
taken

• Since our goal is to increase testing coverage of the function, we’d
like to direct the tester to explore a new path through the function

• To do this, we can negate the last condition in the previous
constraint, in other words, try to find an input to satisfy the first and
second branch conditions

• Passing this equation to a solver, we can get a solution that x equals
10 and y equals 1000 which are valid inputs to reach the abort
statement and find the bug

Introduction

1 int mul2(int x) {

2 return 2 * x;

3 }

4 int h(int x, int y) {

5 if (x != y) {

6 if (mul2(x) == x + 10) {

7 abort();

8 }

9 }

I Input One:
x = 20, y = 1000

I Second branch not
taken: 40 6= 20 + 10

I Path constraint:
(x 6= y) ∧ (2x 6= x + 10)

I Direct tester to new paths

I Alter path constraint &
solve

I New constraint:
(x 6= y) ∧ (2x=x + 10)

I x = 10 ∧ y = 1000

4/20

• To better understand this concept of directed testing, we’ll continue
looking at this example

• Consider we randomly generate the following inputs to h: x equal to
20 and y equal to 1000

• With this input, the first branch, x not equal to y, will be taken, but
the second one will not since the result of mul2 returns 40 and 40 is
not equal to 30

• Given this programs execution, we can capture its path constraint:
the path constraint is a logical formula capturing all program inputs
resulting in the same path

• Specifically, this path constraint specifies that x is not equal to y and
2x is not equal to x + 10: intuitively, we can see these conditions
represent the first branch being taken and the second one not being
taken

• Since our goal is to increase testing coverage of the function, we’d
like to direct the tester to explore a new path through the function

• To do this, we can negate the last condition in the previous
constraint, in other words, try to find an input to satisfy the first and
second branch conditions

• Passing this equation to a solver, we can get a solution that x equals
10 and y equals 1000 which are valid inputs to reach the abort
statement and find the bug

Introduction

1 int mul2(int x) {

2 return 2 * x;

3 }

4 int h(int x, int y) {

5 if (x != y) {

6 if (mul2(x) == x + 10) {

7 abort();

8 }

9 }

I Input One:
x = 20, y = 1000

I Second branch not
taken: 40 6= 20 + 10

I Path constraint:
(x 6= y) ∧ (2x 6= x + 10)

I Direct tester to new paths
I Alter path constraint &

solve

I New constraint:
(x 6= y) ∧ (2x=x + 10)

I x = 10 ∧ y = 1000

4/20

• To better understand this concept of directed testing, we’ll continue
looking at this example

• Consider we randomly generate the following inputs to h: x equal to
20 and y equal to 1000

• With this input, the first branch, x not equal to y, will be taken, but
the second one will not since the result of mul2 returns 40 and 40 is
not equal to 30

• Given this programs execution, we can capture its path constraint:
the path constraint is a logical formula capturing all program inputs
resulting in the same path

• Specifically, this path constraint specifies that x is not equal to y and
2x is not equal to x + 10: intuitively, we can see these conditions
represent the first branch being taken and the second one not being
taken

• Since our goal is to increase testing coverage of the function, we’d
like to direct the tester to explore a new path through the function

• To do this, we can negate the last condition in the previous
constraint, in other words, try to find an input to satisfy the first and
second branch conditions

• Passing this equation to a solver, we can get a solution that x equals
10 and y equals 1000 which are valid inputs to reach the abort
statement and find the bug

Introduction

1 int mul2(int x) {

2 return 2 * x;

3 }

4 int h(int x, int y) {

5 if (x != y) {

6 if (mul2(x) == x + 10) {

7 abort();

8 }

9 }

I Input One:
x = 20, y = 1000

I Second branch not
taken: 40 6= 20 + 10

I Path constraint:
(x 6= y) ∧ (2x 6= x + 10)

I Direct tester to new paths
I Alter path constraint &

solve

I New constraint:
(x 6= y) ∧ (2x=x + 10)

I x = 10 ∧ y = 1000

4/20

• To better understand this concept of directed testing, we’ll continue
looking at this example

• Consider we randomly generate the following inputs to h: x equal to
20 and y equal to 1000

• With this input, the first branch, x not equal to y, will be taken, but
the second one will not since the result of mul2 returns 40 and 40 is
not equal to 30

• Given this programs execution, we can capture its path constraint:
the path constraint is a logical formula capturing all program inputs
resulting in the same path

• Specifically, this path constraint specifies that x is not equal to y and
2x is not equal to x + 10: intuitively, we can see these conditions
represent the first branch being taken and the second one not being
taken

• Since our goal is to increase testing coverage of the function, we’d
like to direct the tester to explore a new path through the function

• To do this, we can negate the last condition in the previous
constraint, in other words, try to find an input to satisfy the first and
second branch conditions

• Passing this equation to a solver, we can get a solution that x equals
10 and y equals 1000 which are valid inputs to reach the abort
statement and find the bug

Introduction

1 int mul2(int x) {

2 return 2 * x;

3 }

4 int h(int x, int y) {

5 if (x != y) {

6 if (mul2(x) == x + 10) {

7 abort();

8 }

9 }

I Input One:
x = 20, y = 1000

I Second branch not
taken: 40 6= 20 + 10

I Path constraint:
(x 6= y) ∧ (2x 6= x + 10)

I Direct tester to new paths
I Alter path constraint &

solve

I New constraint:
(x 6= y) ∧ (2x=x + 10)

I x = 10 ∧ y = 1000

4/20

• To better understand this concept of directed testing, we’ll continue
looking at this example

• Consider we randomly generate the following inputs to h: x equal to
20 and y equal to 1000

• With this input, the first branch, x not equal to y, will be taken, but
the second one will not since the result of mul2 returns 40 and 40 is
not equal to 30

• Given this programs execution, we can capture its path constraint:
the path constraint is a logical formula capturing all program inputs
resulting in the same path

• Specifically, this path constraint specifies that x is not equal to y and
2x is not equal to x + 10: intuitively, we can see these conditions
represent the first branch being taken and the second one not being
taken

• Since our goal is to increase testing coverage of the function, we’d
like to direct the tester to explore a new path through the function

• To do this, we can negate the last condition in the previous
constraint, in other words, try to find an input to satisfy the first and
second branch conditions

• Passing this equation to a solver, we can get a solution that x equals
10 and y equals 1000 which are valid inputs to reach the abort
statement and find the bug

Contributions

I Random testing + directed testing

I Randomly apply function inputs

I Gather path constraints on a trace

I Use solver to find new inputs

I Static method to identify interfaces

I Fully automated

5/20

• This brings us to the authors contributions

• The authors present a framework combining random testing with
directed testing

• The approach works just as in the previous example: they first
randomly apply function inputs, gather a set of path constraints on
an explored trace, and then use a solver to generate new inputs
guiding the program along a new path

• Along with this testing technique, they also present a technique to
identify interfaces, or, locations which should be tested, in the
program

• In this way, the authors analysis becomes fully automated without
requiring the developers to do anything

Contributions

I Random testing + directed testing

I Randomly apply function inputs

I Gather path constraints on a trace

I Use solver to find new inputs

I Static method to identify interfaces

I Fully automated

5/20

• This brings us to the authors contributions

• The authors present a framework combining random testing with
directed testing

• The approach works just as in the previous example: they first
randomly apply function inputs, gather a set of path constraints on
an explored trace, and then use a solver to generate new inputs
guiding the program along a new path

• Along with this testing technique, they also present a technique to
identify interfaces, or, locations which should be tested, in the
program

• In this way, the authors analysis becomes fully automated without
requiring the developers to do anything

Contributions

I Random testing + directed testing

I Randomly apply function inputs

I Gather path constraints on a trace

I Use solver to find new inputs

I Static method to identify interfaces

I Fully automated

5/20

• This brings us to the authors contributions

• The authors present a framework combining random testing with
directed testing

• The approach works just as in the previous example: they first
randomly apply function inputs, gather a set of path constraints on
an explored trace, and then use a solver to generate new inputs
guiding the program along a new path

• Along with this testing technique, they also present a technique to
identify interfaces, or, locations which should be tested, in the
program

• In this way, the authors analysis becomes fully automated without
requiring the developers to do anything

Contributions

I Random testing + directed testing

I Randomly apply function inputs

I Gather path constraints on a trace

I Use solver to find new inputs

I Static method to identify interfaces

I Fully automated

5/20

• This brings us to the authors contributions

• The authors present a framework combining random testing with
directed testing

• The approach works just as in the previous example: they first
randomly apply function inputs, gather a set of path constraints on
an explored trace, and then use a solver to generate new inputs
guiding the program along a new path

• Along with this testing technique, they also present a technique to
identify interfaces, or, locations which should be tested, in the
program

• In this way, the authors analysis becomes fully automated without
requiring the developers to do anything

Contributions

I Random testing + directed testing

I Randomly apply function inputs

I Gather path constraints on a trace

I Use solver to find new inputs

I Static method to identify interfaces

I Fully automated

5/20

• This brings us to the authors contributions

• The authors present a framework combining random testing with
directed testing

• The approach works just as in the previous example: they first
randomly apply function inputs, gather a set of path constraints on
an explored trace, and then use a solver to generate new inputs
guiding the program along a new path

• Along with this testing technique, they also present a technique to
identify interfaces, or, locations which should be tested, in the
program

• In this way, the authors analysis becomes fully automated without
requiring the developers to do anything

Contributions

I Random testing + directed testing

I Randomly apply function inputs

I Gather path constraints on a trace

I Use solver to find new inputs

I Static method to identify interfaces

I Fully automated

5/20

• This brings us to the authors contributions

• The authors present a framework combining random testing with
directed testing

• The approach works just as in the previous example: they first
randomly apply function inputs, gather a set of path constraints on
an explored trace, and then use a solver to generate new inputs
guiding the program along a new path

• Along with this testing technique, they also present a technique to
identify interfaces, or, locations which should be tested, in the
program

• In this way, the authors analysis becomes fully automated without
requiring the developers to do anything

Overview

Introduction

Path Constraints

Experimental Results

Conclusions and Questions

6/20

Next, I’ll go over how the authors generate path constraints during testing

Path Constraints: Overview

1. Execute the program with random inputs

2. Collect path-constraints of execution

3. Negate a condition to generate new inputs

4. Repeat

7/20

• Here again is an overivew of the exploration technique used by the
authors

• First, they execute the program with random inputs

• During the execution of the program, they collect the path
constraints visited by the dynamic execution

• To collect these paths constraints, they instrument each statement in
the program and model the semantics of the statements

• Next, given the path constraints from one execution, they negate one
of the branches in the path constraint and pass the formula to a
solver

• The solver then attempts to find a valuation of the program inputs
such that the path constraint is satisfied, or, in other words, values
of the program inputs such that the new path is expored

• They then use these newly generated inputs to the program and
re-execute the program and repeat the process

• To make this more clear, I’ll go over an example

Path Constraints: Overview

1. Execute the program with random inputs

2. Collect path-constraints of execution

3. Negate a condition to generate new inputs

4. Repeat

7/20

• Here again is an overivew of the exploration technique used by the
authors

• First, they execute the program with random inputs

• During the execution of the program, they collect the path
constraints visited by the dynamic execution

• To collect these paths constraints, they instrument each statement in
the program and model the semantics of the statements

• Next, given the path constraints from one execution, they negate one
of the branches in the path constraint and pass the formula to a
solver

• The solver then attempts to find a valuation of the program inputs
such that the path constraint is satisfied, or, in other words, values
of the program inputs such that the new path is expored

• They then use these newly generated inputs to the program and
re-execute the program and repeat the process

• To make this more clear, I’ll go over an example

Path Constraints: Overview

1. Execute the program with random inputs

2. Collect path-constraints of execution

3. Negate a condition to generate new inputs

4. Repeat

7/20

• Here again is an overivew of the exploration technique used by the
authors

• First, they execute the program with random inputs

• During the execution of the program, they collect the path
constraints visited by the dynamic execution

• To collect these paths constraints, they instrument each statement in
the program and model the semantics of the statements

• Next, given the path constraints from one execution, they negate one
of the branches in the path constraint and pass the formula to a
solver

• The solver then attempts to find a valuation of the program inputs
such that the path constraint is satisfied, or, in other words, values
of the program inputs such that the new path is expored

• They then use these newly generated inputs to the program and
re-execute the program and repeat the process

• To make this more clear, I’ll go over an example

Path Constraints: Overview

1. Execute the program with random inputs

2. Collect path-constraints of execution

3. Negate a condition to generate new inputs

4. Repeat

7/20

• Here again is an overivew of the exploration technique used by the
authors

• First, they execute the program with random inputs

• During the execution of the program, they collect the path
constraints visited by the dynamic execution

• To collect these paths constraints, they instrument each statement in
the program and model the semantics of the statements

• Next, given the path constraints from one execution, they negate one
of the branches in the path constraint and pass the formula to a
solver

• The solver then attempts to find a valuation of the program inputs
such that the path constraint is satisfied, or, in other words, values
of the program inputs such that the new path is expored

• They then use these newly generated inputs to the program and
re-execute the program and repeat the process

• To make this more clear, I’ll go over an example

Path Constraints: Example (1)

1 int f(int x, int y) {

2 int z = y;

3 bool c1 = x == z;

4 if (c1) {

5 int t2 = x + 10;

6 bool c2 = y == t2;

7 if (c2) {

8 abort();

9 }

10 }

11 }

I Concrete input:
x = 10, y = 20

8/20

• Here is an example program which is slightly more complicated than
the one we previously looked at because it has some side effects.

• To understand the path-constraint generation approach, we’ll go
through this program line-by-line and look at how it evolves
symbolically

• First, if we look at the concrete execution with these inputs, the first
branch is not taken since x is not equal to z. So, the first test halts
after the check of the first branch

• During the concrete execution of the program, the authors build a
symbolic representation of all the variables

• Before the execution of the function, the program inputs are
unconstrained, here, I assume 32 bit integers

• After executing line 2, the value of z is updated to be the value of y

• Similarly, the value of c1 is updated to be the value of the expression
x equal to y. Notice that this sets the value of c to be the boolean
value represented by the expression z equal to y

• Finally, since during the concrete execution the branch was not taken
we negate the condition in the branch to generate the path
constraint for the first run

Path Constraints: Example (1)

1 int f(int x, int y) {

2 int z = y;

3 bool c1 = x == z;

4 if (c1) {

5 int t2 = x + 10;

6 bool c2 = y == t2;

7 if (c2) {

8 abort();

9 }

10 }

11 }

I Concrete input:
x = 10, y = 20

8/20

• Here is an example program which is slightly more complicated than
the one we previously looked at because it has some side effects.

• To understand the path-constraint generation approach, we’ll go
through this program line-by-line and look at how it evolves
symbolically

• First, if we look at the concrete execution with these inputs, the first
branch is not taken since x is not equal to z. So, the first test halts
after the check of the first branch

• During the concrete execution of the program, the authors build a
symbolic representation of all the variables

• Before the execution of the function, the program inputs are
unconstrained, here, I assume 32 bit integers

• After executing line 2, the value of z is updated to be the value of y

• Similarly, the value of c1 is updated to be the value of the expression
x equal to y. Notice that this sets the value of c to be the boolean
value represented by the expression z equal to y

• Finally, since during the concrete execution the branch was not taken
we negate the condition in the branch to generate the path
constraint for the first run

Path Constraints: Example (1)

1 int f(int x, int y) {

2 int z = y;

3 bool c1 = x == z;

4 if (c1) {

5 int t2 = x + 10;

6 bool c2 = y == t2;

7 if (c2) {

8 abort();

9 }

10 }

11 }

I Concrete input:
x = 10, y = 20

I z = 20→ x 6= z

8/20

• Here is an example program which is slightly more complicated than
the one we previously looked at because it has some side effects.

• To understand the path-constraint generation approach, we’ll go
through this program line-by-line and look at how it evolves
symbolically

• First, if we look at the concrete execution with these inputs, the first
branch is not taken since x is not equal to z. So, the first test halts
after the check of the first branch

• During the concrete execution of the program, the authors build a
symbolic representation of all the variables

• Before the execution of the function, the program inputs are
unconstrained, here, I assume 32 bit integers

• After executing line 2, the value of z is updated to be the value of y

• Similarly, the value of c1 is updated to be the value of the expression
x equal to y. Notice that this sets the value of c to be the boolean
value represented by the expression z equal to y

• Finally, since during the concrete execution the branch was not taken
we negate the condition in the branch to generate the path
constraint for the first run

Path Constraints: Example (1)

1 int f(int x, int y) {

2 int z = y;

3 bool c1 = x == z;

4 if (c1) {

5 int t2 = x + 10;

6 bool c2 = y == t2;

7 if (c2) {

8 abort();

9 }

10 }

11 }

I Concrete input:
x = 10, y = 20

I Initially:

− 231 ≤ x ≤ 231 − 1

∧ −231 ≤ y ≤ 231 − 1

8/20

• Here is an example program which is slightly more complicated than
the one we previously looked at because it has some side effects.

• To understand the path-constraint generation approach, we’ll go
through this program line-by-line and look at how it evolves
symbolically

• First, if we look at the concrete execution with these inputs, the first
branch is not taken since x is not equal to z. So, the first test halts
after the check of the first branch

• During the concrete execution of the program, the authors build a
symbolic representation of all the variables

• Before the execution of the function, the program inputs are
unconstrained, here, I assume 32 bit integers

• After executing line 2, the value of z is updated to be the value of y

• Similarly, the value of c1 is updated to be the value of the expression
x equal to y. Notice that this sets the value of c to be the boolean
value represented by the expression z equal to y

• Finally, since during the concrete execution the branch was not taken
we negate the condition in the branch to generate the path
constraint for the first run

Path Constraints: Example (1)

1 int f(int x, int y) {

2 int z = y;

3 bool c1 = x == z;

4 if (c1) {

5 int t2 = x + 10;

6 bool c2 = y == t2;

7 if (c2) {

8 abort();

9 }

10 }

11 }

I Concrete input:
x = 10, y = 20

I After line 2:

− 231 ≤ x ≤ 231 − 1

∧ −231 ≤ y ≤ 231 − 1

∧ z := y

8/20

• Here is an example program which is slightly more complicated than
the one we previously looked at because it has some side effects.

• To understand the path-constraint generation approach, we’ll go
through this program line-by-line and look at how it evolves
symbolically

• First, if we look at the concrete execution with these inputs, the first
branch is not taken since x is not equal to z. So, the first test halts
after the check of the first branch

• During the concrete execution of the program, the authors build a
symbolic representation of all the variables

• Before the execution of the function, the program inputs are
unconstrained, here, I assume 32 bit integers

• After executing line 2, the value of z is updated to be the value of y

• Similarly, the value of c1 is updated to be the value of the expression
x equal to y. Notice that this sets the value of c to be the boolean
value represented by the expression z equal to y

• Finally, since during the concrete execution the branch was not taken
we negate the condition in the branch to generate the path
constraint for the first run

Path Constraints: Example (1)

1 int f(int x, int y) {

2 int z = y;

3 bool c1 = x == z;

4 if (c1) {

5 int t2 = x + 10;

6 bool c2 = y == t2;

7 if (c2) {

8 abort();

9 }

10 }

11 }

I Concrete input:
x = 10, y = 20

I After line 3:

− 231 ≤ x ≤ 231 − 1

∧ −231 ≤ y ≤ 231 − 1

∧ z := y

∧ c1 := (x = z)

8/20

• Here is an example program which is slightly more complicated than
the one we previously looked at because it has some side effects.

• To understand the path-constraint generation approach, we’ll go
through this program line-by-line and look at how it evolves
symbolically

• First, if we look at the concrete execution with these inputs, the first
branch is not taken since x is not equal to z. So, the first test halts
after the check of the first branch

• During the concrete execution of the program, the authors build a
symbolic representation of all the variables

• Before the execution of the function, the program inputs are
unconstrained, here, I assume 32 bit integers

• After executing line 2, the value of z is updated to be the value of y

• Similarly, the value of c1 is updated to be the value of the expression
x equal to y. Notice that this sets the value of c to be the boolean
value represented by the expression z equal to y

• Finally, since during the concrete execution the branch was not taken
we negate the condition in the branch to generate the path
constraint for the first run

Path Constraints: Example (1)

1 int f(int x, int y) {

2 int z = y;

3 bool c1 = x == z;

4 if (c1) {

5 int t2 = x + 10;

6 bool c2 = y == t2;

7 if (c2) {

8 abort();

9 }

10 }

11 }

I Concrete input:
x = 10, y = 20

I After line 3:

− 231 ≤ x ≤ 231 − 1

∧ −231 ≤ y ≤ 231 − 1

∧ z := y

∧ c1 := (x = z)

I Path constraint: ¬c1

8/20

• Here is an example program which is slightly more complicated than
the one we previously looked at because it has some side effects.

• To understand the path-constraint generation approach, we’ll go
through this program line-by-line and look at how it evolves
symbolically

• First, if we look at the concrete execution with these inputs, the first
branch is not taken since x is not equal to z. So, the first test halts
after the check of the first branch

• During the concrete execution of the program, the authors build a
symbolic representation of all the variables

• Before the execution of the function, the program inputs are
unconstrained, here, I assume 32 bit integers

• After executing line 2, the value of z is updated to be the value of y

• Similarly, the value of c1 is updated to be the value of the expression
x equal to y. Notice that this sets the value of c to be the boolean
value represented by the expression z equal to y

• Finally, since during the concrete execution the branch was not taken
we negate the condition in the branch to generate the path
constraint for the first run

Path Constraints: Example (2)

1 int f(int x, int y) {

2 int z = y;

3 bool c1 = x == z;

4 if (c1) {

5 int t2 = x + 10;

6 bool c2 = y == t2;

7 if (c2) {

8 abort();

9 }

10 }

11 }

I After line 3:

− 231 ≤ x ≤ 231 − 1

∧ −231 ≤ y ≤ 231 − 1

∧ z := y

∧ c1 := (x = z)

I Old constraint: ¬c1

9/20

• After generating the symbolic expression for the variables along with
the path constraint, the next step is to generate a new input to the
program in order to explore a new path

• Since we’ve only seen one branch, the only new choice we can make
is to explore inside this branch, or, to find program inputs such that
c1 is true

• To do this, we use the symbolic values for all the variables and
conjunct it with the path constraint we want to build a new logic
formula

• Next, we can ask a solver to find a satisfying assignment to this
formula: the satisfying assignment is a valuation of x and y such that
all the constraints hold

• One such solution is that x and y are both equal to zero

• The key thing to notice is that the logic formula we’ve constructed is
such that a satisfying assignment represents values of the inputs
which are guaranteed to reach the branch we are interested in

Path Constraints: Example (2)

1 int f(int x, int y) {

2 int z = y;

3 bool c1 = x == z;

4 if (c1) {

5 int t2 = x + 10;

6 bool c2 = y == t2;

7 if (c2) {

8 abort();

9 }

10 }

11 }

I After line 3:

− 231 ≤ x ≤ 231 − 1

∧ −231 ≤ y ≤ 231 − 1

∧ z := y

∧ c1 := (x = z)

I Old constraint: ¬c1
I New constraint: c1

9/20

• After generating the symbolic expression for the variables along with
the path constraint, the next step is to generate a new input to the
program in order to explore a new path

• Since we’ve only seen one branch, the only new choice we can make
is to explore inside this branch, or, to find program inputs such that
c1 is true

• To do this, we use the symbolic values for all the variables and
conjunct it with the path constraint we want to build a new logic
formula

• Next, we can ask a solver to find a satisfying assignment to this
formula: the satisfying assignment is a valuation of x and y such that
all the constraints hold

• One such solution is that x and y are both equal to zero

• The key thing to notice is that the logic formula we’ve constructed is
such that a satisfying assignment represents values of the inputs
which are guaranteed to reach the branch we are interested in

Path Constraints: Example (2)

1 int f(int x, int y) {

2 int z = y;

3 bool c1 = x == z;

4 if (c1) {

5 int t2 = x + 10;

6 bool c2 = y == t2;

7 if (c2) {

8 abort();

9 }

10 }

11 }

I Logic formula:

− 231 ≤ x ≤ 231 − 1

∧ −231 ≤ y ≤ 231 − 1

∧ z := y

∧ c1 := (x = z)

∧ c1

9/20

• After generating the symbolic expression for the variables along with
the path constraint, the next step is to generate a new input to the
program in order to explore a new path

• Since we’ve only seen one branch, the only new choice we can make
is to explore inside this branch, or, to find program inputs such that
c1 is true

• To do this, we use the symbolic values for all the variables and
conjunct it with the path constraint we want to build a new logic
formula

• Next, we can ask a solver to find a satisfying assignment to this
formula: the satisfying assignment is a valuation of x and y such that
all the constraints hold

• One such solution is that x and y are both equal to zero

• The key thing to notice is that the logic formula we’ve constructed is
such that a satisfying assignment represents values of the inputs
which are guaranteed to reach the branch we are interested in

Path Constraints: Example (2)

1 int f(int x, int y) {

2 int z = y;

3 bool c1 = x == z;

4 if (c1) {

5 int t2 = x + 10;

6 bool c2 = y == t2;

7 if (c2) {

8 abort();

9 }

10 }

11 }

I Logic formula:

− 231 ≤ x ≤ 231 − 1

∧ −231 ≤ y ≤ 231 − 1

∧ z := y

∧ c1 := (x = z)

∧ c1

I Satisfying assignment:
x = 0 ∧ y = 0

9/20

• After generating the symbolic expression for the variables along with
the path constraint, the next step is to generate a new input to the
program in order to explore a new path

• Since we’ve only seen one branch, the only new choice we can make
is to explore inside this branch, or, to find program inputs such that
c1 is true

• To do this, we use the symbolic values for all the variables and
conjunct it with the path constraint we want to build a new logic
formula

• Next, we can ask a solver to find a satisfying assignment to this
formula: the satisfying assignment is a valuation of x and y such that
all the constraints hold

• One such solution is that x and y are both equal to zero

• The key thing to notice is that the logic formula we’ve constructed is
such that a satisfying assignment represents values of the inputs
which are guaranteed to reach the branch we are interested in

Path Constraints: Example (3)

1 int f(int x, int y) {

2 int z = y;

3 bool c1 = x == z;

4 if (c1) {

5 int t2 = x + 10;

6 bool c2 = y == t2;

7 if (c2) {

8 abort();

9 }

10 }

11 }

I Concrete input:
x = 0, y = 0

I c1 = x == z = 1

I t2 = x + 10 = 10

I c2 = y == t2 = 0

10/20

• On the next iteration, we use the inputs we obtained previously to
re-execute the program concretely

• During the concrete execution, we enter the first if-branch, then, we
calculate the value of t2 which is x plus ten which evaluates to 10

• The value of c2 check is y is equal to t2 which evaluates to false
• So, the results of the second iteration are that the first branch is

taken and the second branch is not taken
• Again, during the concrete execution we can generate a symbolic

representation of the program. The symbolic representation this time
is the same as in the previous iteration except it includes the
evaluations of t2 and c2

• Again, this execution has a path constraint which is c1 and not c2.
To generate the next path constraint we again flip one of the
conditions and produce a new logic formula with the desired path
conditions we want

• As a human, solving the constraints on the input variables to reach
this location is already, at least for me, becoming non-trivial

• Luckily, we can use a solver to solve this formula: the result from the
solver is that the formula is unsatisfiable: this means that there does
not exist a value for the inputs to cause the abort to be reached

• For this function at least, the procedure is sound: we’ve formally
proved that the abort statement in this function can never be reached

Path Constraints: Example (3)

1 int f(int x, int y) {

2 int z = y;

3 bool c1 = x == z;

4 if (c1) {

5 int t2 = x + 10;

6 bool c2 = y == t2;

7 if (c2) {

8 abort();

9 }

10 }

11 }

I Concrete input:
x = 0, y = 0

I c1 = x == z = 1

I t2 = x + 10 = 10

I c2 = y == t2 = 0

10/20

• On the next iteration, we use the inputs we obtained previously to
re-execute the program concretely

• During the concrete execution, we enter the first if-branch, then, we
calculate the value of t2 which is x plus ten which evaluates to 10

• The value of c2 check is y is equal to t2 which evaluates to false
• So, the results of the second iteration are that the first branch is

taken and the second branch is not taken
• Again, during the concrete execution we can generate a symbolic

representation of the program. The symbolic representation this time
is the same as in the previous iteration except it includes the
evaluations of t2 and c2

• Again, this execution has a path constraint which is c1 and not c2.
To generate the next path constraint we again flip one of the
conditions and produce a new logic formula with the desired path
conditions we want

• As a human, solving the constraints on the input variables to reach
this location is already, at least for me, becoming non-trivial

• Luckily, we can use a solver to solve this formula: the result from the
solver is that the formula is unsatisfiable: this means that there does
not exist a value for the inputs to cause the abort to be reached

• For this function at least, the procedure is sound: we’ve formally
proved that the abort statement in this function can never be reached

Path Constraints: Example (3)

1 int f(int x, int y) {

2 int z = y;

3 bool c1 = x == z;

4 if (c1) {

5 int t2 = x + 10;

6 bool c2 = y == t2;

7 if (c2) {

8 abort();

9 }

10 }

11 }

I Concrete input:
x = 0, y = 0

I c1 = x == z = 1

I t2 = x + 10 = 10

I c2 = y == t2 = 0

10/20

• On the next iteration, we use the inputs we obtained previously to
re-execute the program concretely

• During the concrete execution, we enter the first if-branch, then, we
calculate the value of t2 which is x plus ten which evaluates to 10

• The value of c2 check is y is equal to t2 which evaluates to false
• So, the results of the second iteration are that the first branch is

taken and the second branch is not taken
• Again, during the concrete execution we can generate a symbolic

representation of the program. The symbolic representation this time
is the same as in the previous iteration except it includes the
evaluations of t2 and c2

• Again, this execution has a path constraint which is c1 and not c2.
To generate the next path constraint we again flip one of the
conditions and produce a new logic formula with the desired path
conditions we want

• As a human, solving the constraints on the input variables to reach
this location is already, at least for me, becoming non-trivial

• Luckily, we can use a solver to solve this formula: the result from the
solver is that the formula is unsatisfiable: this means that there does
not exist a value for the inputs to cause the abort to be reached

• For this function at least, the procedure is sound: we’ve formally
proved that the abort statement in this function can never be reached

Path Constraints: Example (3)

1 int f(int x, int y) {

2 int z = y;

3 bool c1 = x == z;

4 if (c1) {

5 int t2 = x + 10;

6 bool c2 = y == t2;

7 if (c2) {

8 abort();

9 }

10 }

11 }

I After line 6:

231 ≤ x ≤ 231 − 1

∧ 231 ≤ y ≤ 231 − 1

∧ z := y

∧ c1 := (x = z)

∧ t2 := x + 10

∧ c2 := y = t2

10/20

• On the next iteration, we use the inputs we obtained previously to
re-execute the program concretely

• During the concrete execution, we enter the first if-branch, then, we
calculate the value of t2 which is x plus ten which evaluates to 10

• The value of c2 check is y is equal to t2 which evaluates to false
• So, the results of the second iteration are that the first branch is

taken and the second branch is not taken
• Again, during the concrete execution we can generate a symbolic

representation of the program. The symbolic representation this time
is the same as in the previous iteration except it includes the
evaluations of t2 and c2

• Again, this execution has a path constraint which is c1 and not c2.
To generate the next path constraint we again flip one of the
conditions and produce a new logic formula with the desired path
conditions we want

• As a human, solving the constraints on the input variables to reach
this location is already, at least for me, becoming non-trivial

• Luckily, we can use a solver to solve this formula: the result from the
solver is that the formula is unsatisfiable: this means that there does
not exist a value for the inputs to cause the abort to be reached

• For this function at least, the procedure is sound: we’ve formally
proved that the abort statement in this function can never be reached

Path Constraints: Example (3)

1 int f(int x, int y) {

2 int z = y;

3 bool c1 = x == z;

4 if (c1) {

5 int t2 = x + 10;

6 bool c2 = y == t2;

7 if (c2) {

8 abort();

9 }

10 }

11 }

I After line 6:

231 ≤ x ≤ 231 − 1

∧ 231 ≤ y ≤ 231 − 1

∧ z := y

∧ c1 := (x = z)

∧ t2 := x + 10

∧ c2 := y = t2

I Path constraint: c1 ∧¬c2

10/20

• On the next iteration, we use the inputs we obtained previously to
re-execute the program concretely

• During the concrete execution, we enter the first if-branch, then, we
calculate the value of t2 which is x plus ten which evaluates to 10

• The value of c2 check is y is equal to t2 which evaluates to false
• So, the results of the second iteration are that the first branch is

taken and the second branch is not taken
• Again, during the concrete execution we can generate a symbolic

representation of the program. The symbolic representation this time
is the same as in the previous iteration except it includes the
evaluations of t2 and c2

• Again, this execution has a path constraint which is c1 and not c2.
To generate the next path constraint we again flip one of the
conditions and produce a new logic formula with the desired path
conditions we want

• As a human, solving the constraints on the input variables to reach
this location is already, at least for me, becoming non-trivial

• Luckily, we can use a solver to solve this formula: the result from the
solver is that the formula is unsatisfiable: this means that there does
not exist a value for the inputs to cause the abort to be reached

• For this function at least, the procedure is sound: we’ve formally
proved that the abort statement in this function can never be reached

Path Constraints: Example (3)

1 int f(int x, int y) {

2 int z = y;

3 bool c1 = x == z;

4 if (c1) {

5 int t2 = x + 10;

6 bool c2 = y == t2;

7 if (c2) {

8 abort();

9 }

10 }

11 }

I New constraint: c1 ∧ c2

10/20

• On the next iteration, we use the inputs we obtained previously to
re-execute the program concretely

• During the concrete execution, we enter the first if-branch, then, we
calculate the value of t2 which is x plus ten which evaluates to 10

• The value of c2 check is y is equal to t2 which evaluates to false
• So, the results of the second iteration are that the first branch is

taken and the second branch is not taken
• Again, during the concrete execution we can generate a symbolic

representation of the program. The symbolic representation this time
is the same as in the previous iteration except it includes the
evaluations of t2 and c2

• Again, this execution has a path constraint which is c1 and not c2.
To generate the next path constraint we again flip one of the
conditions and produce a new logic formula with the desired path
conditions we want

• As a human, solving the constraints on the input variables to reach
this location is already, at least for me, becoming non-trivial

• Luckily, we can use a solver to solve this formula: the result from the
solver is that the formula is unsatisfiable: this means that there does
not exist a value for the inputs to cause the abort to be reached

• For this function at least, the procedure is sound: we’ve formally
proved that the abort statement in this function can never be reached

Path Constraints: Example (3)

1 int f(int x, int y) {

2 int z = y;

3 bool c1 = x == z;

4 if (c1) {

5 int t2 = x + 10;

6 bool c2 = y == t2;

7 if (c2) {

8 abort();

9 }

10 }

11 }

I New constraint: c1 ∧ c2
I Logic formula:

231 ≤ x ≤ 231 − 1

∧ 231 ≤ y ≤ 231 − 1

∧ z := y

∧ c1 := (x = z)

∧ t2 := x + 10

∧ c2 := y = t2

∧ c1 ∧ c2

10/20

• On the next iteration, we use the inputs we obtained previously to
re-execute the program concretely

• During the concrete execution, we enter the first if-branch, then, we
calculate the value of t2 which is x plus ten which evaluates to 10

• The value of c2 check is y is equal to t2 which evaluates to false
• So, the results of the second iteration are that the first branch is

taken and the second branch is not taken
• Again, during the concrete execution we can generate a symbolic

representation of the program. The symbolic representation this time
is the same as in the previous iteration except it includes the
evaluations of t2 and c2

• Again, this execution has a path constraint which is c1 and not c2.
To generate the next path constraint we again flip one of the
conditions and produce a new logic formula with the desired path
conditions we want

• As a human, solving the constraints on the input variables to reach
this location is already, at least for me, becoming non-trivial

• Luckily, we can use a solver to solve this formula: the result from the
solver is that the formula is unsatisfiable: this means that there does
not exist a value for the inputs to cause the abort to be reached

• For this function at least, the procedure is sound: we’ve formally
proved that the abort statement in this function can never be reached

Path Constraints: Example (3)

1 int f(int x, int y) {

2 int z = y;

3 bool c1 = x == z;

4 if (c1) {

5 int t2 = x + 10;

6 bool c2 = y == t2;

7 if (c2) {

8 abort();

9 }

10 }

11 }

I New constraint: c1 ∧ c2
I Logic formula:

231 ≤ x ≤ 231 − 1

∧ 231 ≤ y ≤ 231 − 1

∧ z := y

∧ c1 := (x = z)

∧ t2 := x + 10

∧ c2 := y = t2

∧ c1 ∧ c2

I Unsatisfiable! (The error is
unreachable)

10/20

• On the next iteration, we use the inputs we obtained previously to
re-execute the program concretely

• During the concrete execution, we enter the first if-branch, then, we
calculate the value of t2 which is x plus ten which evaluates to 10

• The value of c2 check is y is equal to t2 which evaluates to false
• So, the results of the second iteration are that the first branch is

taken and the second branch is not taken
• Again, during the concrete execution we can generate a symbolic

representation of the program. The symbolic representation this time
is the same as in the previous iteration except it includes the
evaluations of t2 and c2

• Again, this execution has a path constraint which is c1 and not c2.
To generate the next path constraint we again flip one of the
conditions and produce a new logic formula with the desired path
conditions we want

• As a human, solving the constraints on the input variables to reach
this location is already, at least for me, becoming non-trivial

• Luckily, we can use a solver to solve this formula: the result from the
solver is that the formula is unsatisfiable: this means that there does
not exist a value for the inputs to cause the abort to be reached

• For this function at least, the procedure is sound: we’ve formally
proved that the abort statement in this function can never be reached

Implementation Intuition

I Transfer functions

I Function from symbolic equation to symbolic equation
I S → S

I Evaluate: z = x

I λS .SJz := xK

11/20

• Now that I’ve gone over an example of their technique, I’ll go over a
high level intuition of how their technique works and try to relate it
back to stuff we’ve seen so far

• Like most of the analyses we’ve seen so far, their technique uses
transfer functions

• To keep track of the symbolic values of all the variables, the authors
define transfer functions for all statements in the program

• For example, if we encounter an assignment statement during the
execution, we use a transfer function which takes as input a symbolic
representation, S, and returns a new symbolic representation which is
the same as S except the value of x is assigned to z

• Defining transfer functions for every type of statement in the
program allows for the analysis to operate on arbitrary sequences of
expressions

Implementation Intuition

I Transfer functions
I Function from symbolic equation to symbolic equation

I S → S
I Evaluate: z = x

I λS .SJz := xK

11/20

• Now that I’ve gone over an example of their technique, I’ll go over a
high level intuition of how their technique works and try to relate it
back to stuff we’ve seen so far

• Like most of the analyses we’ve seen so far, their technique uses
transfer functions

• To keep track of the symbolic values of all the variables, the authors
define transfer functions for all statements in the program

• For example, if we encounter an assignment statement during the
execution, we use a transfer function which takes as input a symbolic
representation, S, and returns a new symbolic representation which is
the same as S except the value of x is assigned to z

• Defining transfer functions for every type of statement in the
program allows for the analysis to operate on arbitrary sequences of
expressions

Implementation Intuition

I Transfer functions
I Function from symbolic equation to symbolic equation
I S → S

I Evaluate: z = x

I λS .SJz := xK

11/20

• Now that I’ve gone over an example of their technique, I’ll go over a
high level intuition of how their technique works and try to relate it
back to stuff we’ve seen so far

• Like most of the analyses we’ve seen so far, their technique uses
transfer functions

• To keep track of the symbolic values of all the variables, the authors
define transfer functions for all statements in the program

• For example, if we encounter an assignment statement during the
execution, we use a transfer function which takes as input a symbolic
representation, S, and returns a new symbolic representation which is
the same as S except the value of x is assigned to z

• Defining transfer functions for every type of statement in the
program allows for the analysis to operate on arbitrary sequences of
expressions

Implementation Intuition

I Transfer functions
I Function from symbolic equation to symbolic equation
I S → S

I Evaluate: z = x

I λS .SJz := xK

11/20

• Now that I’ve gone over an example of their technique, I’ll go over a
high level intuition of how their technique works and try to relate it
back to stuff we’ve seen so far

• Like most of the analyses we’ve seen so far, their technique uses
transfer functions

• To keep track of the symbolic values of all the variables, the authors
define transfer functions for all statements in the program

• For example, if we encounter an assignment statement during the
execution, we use a transfer function which takes as input a symbolic
representation, S, and returns a new symbolic representation which is
the same as S except the value of x is assigned to z

• Defining transfer functions for every type of statement in the
program allows for the analysis to operate on arbitrary sequences of
expressions

Implementation Intuition

I Transfer functions
I Function from symbolic equation to symbolic equation
I S → S

I Evaluate: z = x

I λS .SJz := xK

11/20

• Now that I’ve gone over an example of their technique, I’ll go over a
high level intuition of how their technique works and try to relate it
back to stuff we’ve seen so far

• Like most of the analyses we’ve seen so far, their technique uses
transfer functions

• To keep track of the symbolic values of all the variables, the authors
define transfer functions for all statements in the program

• For example, if we encounter an assignment statement during the
execution, we use a transfer function which takes as input a symbolic
representation, S, and returns a new symbolic representation which is
the same as S except the value of x is assigned to z

• Defining transfer functions for every type of statement in the
program allows for the analysis to operate on arbitrary sequences of
expressions

Soundness

I Programs may be infinite

I Cannot have an infinitly long formulas

I Solution: bound the depth of the search

I Under-approximated analysis

I Bug hunting
I Not proof generation

I No false alarms:

I Detected bugs are guarnateed to exist in the actual
program

12/20

• Since in general programs may be infinite, for example, in the
presence of infinite loops, the analysis cannot generally handle all
types of programs

• This is because we eventually need to produce a logic formula
representing a path through the program: this logic formula cannot
be infinitely long

• The solution to this problem is to only search through a bounded
depth of a program

• As a result, the authors analysis, in general, is under-approximated

• This means it should be used for bug hunting and not proof
generation

• However, because it is under-approximated, we have a nice side
effect that the analysis has no false alarms

• This means that any bug which is detected by the algorithm is
guaranteed to be a real bug

Soundness

I Programs may be infinite
I Cannot have an infinitly long formulas

I Solution: bound the depth of the search

I Under-approximated analysis

I Bug hunting
I Not proof generation

I No false alarms:

I Detected bugs are guarnateed to exist in the actual
program

12/20

• Since in general programs may be infinite, for example, in the
presence of infinite loops, the analysis cannot generally handle all
types of programs

• This is because we eventually need to produce a logic formula
representing a path through the program: this logic formula cannot
be infinitely long

• The solution to this problem is to only search through a bounded
depth of a program

• As a result, the authors analysis, in general, is under-approximated

• This means it should be used for bug hunting and not proof
generation

• However, because it is under-approximated, we have a nice side
effect that the analysis has no false alarms

• This means that any bug which is detected by the algorithm is
guaranteed to be a real bug

Soundness

I Programs may be infinite
I Cannot have an infinitly long formulas

I Solution: bound the depth of the search

I Under-approximated analysis

I Bug hunting
I Not proof generation

I No false alarms:

I Detected bugs are guarnateed to exist in the actual
program

12/20

• Since in general programs may be infinite, for example, in the
presence of infinite loops, the analysis cannot generally handle all
types of programs

• This is because we eventually need to produce a logic formula
representing a path through the program: this logic formula cannot
be infinitely long

• The solution to this problem is to only search through a bounded
depth of a program

• As a result, the authors analysis, in general, is under-approximated

• This means it should be used for bug hunting and not proof
generation

• However, because it is under-approximated, we have a nice side
effect that the analysis has no false alarms

• This means that any bug which is detected by the algorithm is
guaranteed to be a real bug

Soundness

I Programs may be infinite
I Cannot have an infinitly long formulas

I Solution: bound the depth of the search

I Under-approximated analysis

I Bug hunting
I Not proof generation

I No false alarms:

I Detected bugs are guarnateed to exist in the actual
program

12/20

• Since in general programs may be infinite, for example, in the
presence of infinite loops, the analysis cannot generally handle all
types of programs

• This is because we eventually need to produce a logic formula
representing a path through the program: this logic formula cannot
be infinitely long

• The solution to this problem is to only search through a bounded
depth of a program

• As a result, the authors analysis, in general, is under-approximated

• This means it should be used for bug hunting and not proof
generation

• However, because it is under-approximated, we have a nice side
effect that the analysis has no false alarms

• This means that any bug which is detected by the algorithm is
guaranteed to be a real bug

Soundness

I Programs may be infinite
I Cannot have an infinitly long formulas

I Solution: bound the depth of the search

I Under-approximated analysis
I Bug hunting

I Not proof generation

I No false alarms:

I Detected bugs are guarnateed to exist in the actual
program

12/20

• Since in general programs may be infinite, for example, in the
presence of infinite loops, the analysis cannot generally handle all
types of programs

• This is because we eventually need to produce a logic formula
representing a path through the program: this logic formula cannot
be infinitely long

• The solution to this problem is to only search through a bounded
depth of a program

• As a result, the authors analysis, in general, is under-approximated

• This means it should be used for bug hunting and not proof
generation

• However, because it is under-approximated, we have a nice side
effect that the analysis has no false alarms

• This means that any bug which is detected by the algorithm is
guaranteed to be a real bug

Soundness

I Programs may be infinite
I Cannot have an infinitly long formulas

I Solution: bound the depth of the search

I Under-approximated analysis
I Bug hunting
I Not proof generation

I No false alarms:

I Detected bugs are guarnateed to exist in the actual
program

12/20

• Since in general programs may be infinite, for example, in the
presence of infinite loops, the analysis cannot generally handle all
types of programs

• This is because we eventually need to produce a logic formula
representing a path through the program: this logic formula cannot
be infinitely long

• The solution to this problem is to only search through a bounded
depth of a program

• As a result, the authors analysis, in general, is under-approximated

• This means it should be used for bug hunting and not proof
generation

• However, because it is under-approximated, we have a nice side
effect that the analysis has no false alarms

• This means that any bug which is detected by the algorithm is
guaranteed to be a real bug

Soundness

I Programs may be infinite
I Cannot have an infinitly long formulas

I Solution: bound the depth of the search

I Under-approximated analysis
I Bug hunting
I Not proof generation

I No false alarms:

I Detected bugs are guarnateed to exist in the actual
program

12/20

• Since in general programs may be infinite, for example, in the
presence of infinite loops, the analysis cannot generally handle all
types of programs

• This is because we eventually need to produce a logic formula
representing a path through the program: this logic formula cannot
be infinitely long

• The solution to this problem is to only search through a bounded
depth of a program

• As a result, the authors analysis, in general, is under-approximated

• This means it should be used for bug hunting and not proof
generation

• However, because it is under-approximated, we have a nice side
effect that the analysis has no false alarms

• This means that any bug which is detected by the algorithm is
guaranteed to be a real bug

Soundness

I Programs may be infinite
I Cannot have an infinitly long formulas

I Solution: bound the depth of the search

I Under-approximated analysis
I Bug hunting
I Not proof generation

I No false alarms:
I Detected bugs are guarnateed to exist in the actual

program

12/20

• Since in general programs may be infinite, for example, in the
presence of infinite loops, the analysis cannot generally handle all
types of programs

• This is because we eventually need to produce a logic formula
representing a path through the program: this logic formula cannot
be infinitely long

• The solution to this problem is to only search through a bounded
depth of a program

• As a result, the authors analysis, in general, is under-approximated

• This means it should be used for bug hunting and not proof
generation

• However, because it is under-approximated, we have a nice side
effect that the analysis has no false alarms

• This means that any bug which is detected by the algorithm is
guaranteed to be a real bug

Overview

Introduction

Path Constraints

Experimental Results

Conclusions and Questions

13/20

Now that I’ve gone over a high-level intution behind their approach, I’ll

present the experimental results

Test Bench

I Pentium III 800 MHz Processor

I lp solve solver

I CIL parser

I Three programs:

1. Air-Conditioner Controller
2. Needham-Schroeder Protocol
3. oSIP Telephony Library

14/20

• The authors implemented their tool to test C programs

• They ran tests on a Pentium III processor running at 800 MHz

• They used a solver called lp solve to solve the constraint formulas

• And, they tested on three different programs: a small air conditioner
controller example, a crypto protocol, and an open source library
called oSIP

Test Bench

I Pentium III 800 MHz Processor

I lp solve solver

I CIL parser

I Three programs:

1. Air-Conditioner Controller
2. Needham-Schroeder Protocol
3. oSIP Telephony Library

14/20

• The authors implemented their tool to test C programs

• They ran tests on a Pentium III processor running at 800 MHz

• They used a solver called lp solve to solve the constraint formulas

• And, they tested on three different programs: a small air conditioner
controller example, a crypto protocol, and an open source library
called oSIP

Test Bench

I Pentium III 800 MHz Processor

I lp solve solver

I CIL parser

I Three programs:

1. Air-Conditioner Controller
2. Needham-Schroeder Protocol
3. oSIP Telephony Library

14/20

• The authors implemented their tool to test C programs

• They ran tests on a Pentium III processor running at 800 MHz

• They used a solver called lp solve to solve the constraint formulas

• And, they tested on three different programs: a small air conditioner
controller example, a crypto protocol, and an open source library
called oSIP

Test Bench

I Pentium III 800 MHz Processor

I lp solve solver

I CIL parser

I Three programs:

1. Air-Conditioner Controller
2. Needham-Schroeder Protocol
3. oSIP Telephony Library

14/20

• The authors implemented their tool to test C programs

• They ran tests on a Pentium III processor running at 800 MHz

• They used a solver called lp solve to solve the constraint formulas

• And, they tested on three different programs: a small air conditioner
controller example, a crypto protocol, and an open source library
called oSIP

Test Bench

I Pentium III 800 MHz Processor

I lp solve solver

I CIL parser

I Three programs:

1. Air-Conditioner Controller

2. Needham-Schroeder Protocol
3. oSIP Telephony Library

14/20

• The authors implemented their tool to test C programs

• They ran tests on a Pentium III processor running at 800 MHz

• They used a solver called lp solve to solve the constraint formulas

• And, they tested on three different programs: a small air conditioner
controller example, a crypto protocol, and an open source library
called oSIP

Test Bench

I Pentium III 800 MHz Processor

I lp solve solver

I CIL parser

I Three programs:

1. Air-Conditioner Controller
2. Needham-Schroeder Protocol

3. oSIP Telephony Library

14/20

• The authors implemented their tool to test C programs

• They ran tests on a Pentium III processor running at 800 MHz

• They used a solver called lp solve to solve the constraint formulas

• And, they tested on three different programs: a small air conditioner
controller example, a crypto protocol, and an open source library
called oSIP

Test Bench

I Pentium III 800 MHz Processor

I lp solve solver

I CIL parser

I Three programs:

1. Air-Conditioner Controller
2. Needham-Schroeder Protocol
3. oSIP Telephony Library

14/20

• The authors implemented their tool to test C programs

• They ran tests on a Pentium III processor running at 800 MHz

• They used a solver called lp solve to solve the constraint formulas

• And, they tested on three different programs: a small air conditioner
controller example, a crypto protocol, and an open source library
called oSIP

AC-Controller

1 int is_room_hot, ac, is_door_closed;

2 void ac_controller(int message) {

3 if (message == 0) is_room_hot = 1;

4 if (message == 1) is_room_hot = 0;

5 if (message == 2) {

6 is_door_closed = 0;

7 ac = 0;

8 }

9 if (message == 3) {

10 is_door_closed = 1;

11 if (is_room_hot) ac = 1;

12 }

13 if (is_room_hot && is_door_closed

14 && !ac) {

15 abort();

16 }

17 }

I Random testing
does not work

I 232 × 232 = 264

number of
possibilities

I One leads to the
error

I Never finds the bug
after “hours”

I DART: less than
one second

15/20

• First, we can look at the source code of the AC controller

• The source code is very small but makes a serves as a good
comparison to randomized testing

• The program is buggy: the abort statement in the program is
reachable under certain program inputs

• First, to understand how this function was run you need to imagine
that this function can be called an arbitrary number of times with
different values for message

• It is essentially representing a state machine which causes transitions
based on the input to the function

• The abort statement in the program can be reached after applying
two messages: first passing 3 and then passing 0

• Because this bug takes at least two messages to manifest, the
chance for a random tester to find it is one out of 2 to the sixty four,
which is obviously very close to zero

• DART on the other hand, finds the bug in less than one second

AC-Controller

1 int is_room_hot, ac, is_door_closed;

2 void ac_controller(int message) {

3 if (message == 0) is_room_hot = 1;

4 if (message == 1) is_room_hot = 0;

5 if (message == 2) {

6 is_door_closed = 0;

7 ac = 0;

8 }

9 if (message == 3) {

10 is_door_closed = 1;

11 if (is_room_hot) ac = 1;

12 }

13 if (is_room_hot && is_door_closed

14 && !ac) {

15 abort();

16 }

17 }

I Random testing
does not work

I 232 × 232 = 264

number of
possibilities

I One leads to the
error

I Never finds the bug
after “hours”

I DART: less than
one second

15/20

• First, we can look at the source code of the AC controller

• The source code is very small but makes a serves as a good
comparison to randomized testing

• The program is buggy: the abort statement in the program is
reachable under certain program inputs

• First, to understand how this function was run you need to imagine
that this function can be called an arbitrary number of times with
different values for message

• It is essentially representing a state machine which causes transitions
based on the input to the function

• The abort statement in the program can be reached after applying
two messages: first passing 3 and then passing 0

• Because this bug takes at least two messages to manifest, the
chance for a random tester to find it is one out of 2 to the sixty four,
which is obviously very close to zero

• DART on the other hand, finds the bug in less than one second

AC-Controller

1 int is_room_hot, ac, is_door_closed;

2 void ac_controller(int message) {

3 if (message == 0) is_room_hot = 1;

4 if (message == 1) is_room_hot = 0;

5 if (message == 2) {

6 is_door_closed = 0;

7 ac = 0;

8 }

9 if (message == 3) {

10 is_door_closed = 1;

11 if (is_room_hot) ac = 1;

12 }

13 if (is_room_hot && is_door_closed

14 && !ac) {

15 abort();

16 }

17 }

I Random testing
does not work

I 232 × 232 = 264

number of
possibilities

I One leads to the
error

I Never finds the bug
after “hours”

I DART: less than
one second

15/20

• First, we can look at the source code of the AC controller

• The source code is very small but makes a serves as a good
comparison to randomized testing

• The program is buggy: the abort statement in the program is
reachable under certain program inputs

• First, to understand how this function was run you need to imagine
that this function can be called an arbitrary number of times with
different values for message

• It is essentially representing a state machine which causes transitions
based on the input to the function

• The abort statement in the program can be reached after applying
two messages: first passing 3 and then passing 0

• Because this bug takes at least two messages to manifest, the
chance for a random tester to find it is one out of 2 to the sixty four,
which is obviously very close to zero

• DART on the other hand, finds the bug in less than one second

AC-Controller

1 int is_room_hot, ac, is_door_closed;

2 void ac_controller(int message) {

3 if (message == 0) is_room_hot = 1;

4 if (message == 1) is_room_hot = 0;

5 if (message == 2) {

6 is_door_closed = 0;

7 ac = 0;

8 }

9 if (message == 3) {

10 is_door_closed = 1;

11 if (is_room_hot) ac = 1;

12 }

13 if (is_room_hot && is_door_closed

14 && !ac) {

15 abort();

16 }

17 }

I Random testing
does not work

I 232 × 232 = 264

number of
possibilities

I One leads to the
error

I Never finds the bug
after “hours”

I DART: less than
one second

15/20

• First, we can look at the source code of the AC controller

• The source code is very small but makes a serves as a good
comparison to randomized testing

• The program is buggy: the abort statement in the program is
reachable under certain program inputs

• First, to understand how this function was run you need to imagine
that this function can be called an arbitrary number of times with
different values for message

• It is essentially representing a state machine which causes transitions
based on the input to the function

• The abort statement in the program can be reached after applying
two messages: first passing 3 and then passing 0

• Because this bug takes at least two messages to manifest, the
chance for a random tester to find it is one out of 2 to the sixty four,
which is obviously very close to zero

• DART on the other hand, finds the bug in less than one second

AC-Controller

1 int is_room_hot, ac, is_door_closed;

2 void ac_controller(int message) {

3 if (message == 0) is_room_hot = 1;

4 if (message == 1) is_room_hot = 0;

5 if (message == 2) {

6 is_door_closed = 0;

7 ac = 0;

8 }

9 if (message == 3) {

10 is_door_closed = 1;

11 if (is_room_hot) ac = 1;

12 }

13 if (is_room_hot && is_door_closed

14 && !ac) {

15 abort();

16 }

17 }

I Random testing
does not work

I 232 × 232 = 264

number of
possibilities

I One leads to the
error

I Never finds the bug
after “hours”

I DART: less than
one second

15/20

• First, we can look at the source code of the AC controller

• The source code is very small but makes a serves as a good
comparison to randomized testing

• The program is buggy: the abort statement in the program is
reachable under certain program inputs

• First, to understand how this function was run you need to imagine
that this function can be called an arbitrary number of times with
different values for message

• It is essentially representing a state machine which causes transitions
based on the input to the function

• The abort statement in the program can be reached after applying
two messages: first passing 3 and then passing 0

• Because this bug takes at least two messages to manifest, the
chance for a random tester to find it is one out of 2 to the sixty four,
which is obviously very close to zero

• DART on the other hand, finds the bug in less than one second

Needham-Schroeder Protocol

I Protocol for two users to authenticate each other

I Contains impersonation bug

I C implementation (400 LOC)

I Used “reasonable” environment constraints

I Dart: 18 minutes to find error

I Re-ran on “fixed” version: found another bug

I 22 minutes

16/20

• Next, the authors looked at the C implementation of the
Needham-Schroeder protocol

• We do not need to consider the details of the protcol but is
essentially a way for two users to start a secure communication
channel

• The original algorithm contains a bug allowing an attacker to
impersonate a user

• They tested on a 400 line C implementation

• They constrained the environment, or, the actions acceptable by the
attacker to be as reasonable as the assumptions used in the paper
describing the fault in the protocol

• Given these assumptions, DART was able to reproduce the fault in
the protocol after 18 minutes of testing

• The author who originally reported the fault in the protocol proposed
a fix

• Re running dart on the fixed protocol lead to another bug to be
found which was acknowledged by the author

• It took DART 22 minutes to find this bug

Needham-Schroeder Protocol

I Protocol for two users to authenticate each other

I Contains impersonation bug

I C implementation (400 LOC)

I Used “reasonable” environment constraints

I Dart: 18 minutes to find error

I Re-ran on “fixed” version: found another bug

I 22 minutes

16/20

• Next, the authors looked at the C implementation of the
Needham-Schroeder protocol

• We do not need to consider the details of the protcol but is
essentially a way for two users to start a secure communication
channel

• The original algorithm contains a bug allowing an attacker to
impersonate a user

• They tested on a 400 line C implementation

• They constrained the environment, or, the actions acceptable by the
attacker to be as reasonable as the assumptions used in the paper
describing the fault in the protocol

• Given these assumptions, DART was able to reproduce the fault in
the protocol after 18 minutes of testing

• The author who originally reported the fault in the protocol proposed
a fix

• Re running dart on the fixed protocol lead to another bug to be
found which was acknowledged by the author

• It took DART 22 minutes to find this bug

Needham-Schroeder Protocol

I Protocol for two users to authenticate each other

I Contains impersonation bug

I C implementation (400 LOC)

I Used “reasonable” environment constraints

I Dart: 18 minutes to find error

I Re-ran on “fixed” version: found another bug

I 22 minutes

16/20

• Next, the authors looked at the C implementation of the
Needham-Schroeder protocol

• We do not need to consider the details of the protcol but is
essentially a way for two users to start a secure communication
channel

• The original algorithm contains a bug allowing an attacker to
impersonate a user

• They tested on a 400 line C implementation

• They constrained the environment, or, the actions acceptable by the
attacker to be as reasonable as the assumptions used in the paper
describing the fault in the protocol

• Given these assumptions, DART was able to reproduce the fault in
the protocol after 18 minutes of testing

• The author who originally reported the fault in the protocol proposed
a fix

• Re running dart on the fixed protocol lead to another bug to be
found which was acknowledged by the author

• It took DART 22 minutes to find this bug

Needham-Schroeder Protocol

I Protocol for two users to authenticate each other

I Contains impersonation bug

I C implementation (400 LOC)

I Used “reasonable” environment constraints

I Dart: 18 minutes to find error

I Re-ran on “fixed” version: found another bug

I 22 minutes

16/20

• Next, the authors looked at the C implementation of the
Needham-Schroeder protocol

• We do not need to consider the details of the protcol but is
essentially a way for two users to start a secure communication
channel

• The original algorithm contains a bug allowing an attacker to
impersonate a user

• They tested on a 400 line C implementation

• They constrained the environment, or, the actions acceptable by the
attacker to be as reasonable as the assumptions used in the paper
describing the fault in the protocol

• Given these assumptions, DART was able to reproduce the fault in
the protocol after 18 minutes of testing

• The author who originally reported the fault in the protocol proposed
a fix

• Re running dart on the fixed protocol lead to another bug to be
found which was acknowledged by the author

• It took DART 22 minutes to find this bug

Needham-Schroeder Protocol

I Protocol for two users to authenticate each other

I Contains impersonation bug

I C implementation (400 LOC)

I Used “reasonable” environment constraints

I Dart: 18 minutes to find error

I Re-ran on “fixed” version: found another bug

I 22 minutes

16/20

• Next, the authors looked at the C implementation of the
Needham-Schroeder protocol

• We do not need to consider the details of the protcol but is
essentially a way for two users to start a secure communication
channel

• The original algorithm contains a bug allowing an attacker to
impersonate a user

• They tested on a 400 line C implementation

• They constrained the environment, or, the actions acceptable by the
attacker to be as reasonable as the assumptions used in the paper
describing the fault in the protocol

• Given these assumptions, DART was able to reproduce the fault in
the protocol after 18 minutes of testing

• The author who originally reported the fault in the protocol proposed
a fix

• Re running dart on the fixed protocol lead to another bug to be
found which was acknowledged by the author

• It took DART 22 minutes to find this bug

Needham-Schroeder Protocol

I Protocol for two users to authenticate each other

I Contains impersonation bug

I C implementation (400 LOC)

I Used “reasonable” environment constraints

I Dart: 18 minutes to find error

I Re-ran on “fixed” version: found another bug

I 22 minutes

16/20

• Next, the authors looked at the C implementation of the
Needham-Schroeder protocol

• We do not need to consider the details of the protcol but is
essentially a way for two users to start a secure communication
channel

• The original algorithm contains a bug allowing an attacker to
impersonate a user

• They tested on a 400 line C implementation

• They constrained the environment, or, the actions acceptable by the
attacker to be as reasonable as the assumptions used in the paper
describing the fault in the protocol

• Given these assumptions, DART was able to reproduce the fault in
the protocol after 18 minutes of testing

• The author who originally reported the fault in the protocol proposed
a fix

• Re running dart on the fixed protocol lead to another bug to be
found which was acknowledged by the author

• It took DART 22 minutes to find this bug

Needham-Schroeder Protocol

I Protocol for two users to authenticate each other

I Contains impersonation bug

I C implementation (400 LOC)

I Used “reasonable” environment constraints

I Dart: 18 minutes to find error

I Re-ran on “fixed” version: found another bug
I 22 minutes

16/20

• Next, the authors looked at the C implementation of the
Needham-Schroeder protocol

• We do not need to consider the details of the protcol but is
essentially a way for two users to start a secure communication
channel

• The original algorithm contains a bug allowing an attacker to
impersonate a user

• They tested on a 400 line C implementation

• They constrained the environment, or, the actions acceptable by the
attacker to be as reasonable as the assumptions used in the paper
describing the fault in the protocol

• Given these assumptions, DART was able to reproduce the fault in
the protocol after 18 minutes of testing

• The author who originally reported the fault in the protocol proposed
a fix

• Re running dart on the fixed protocol lead to another bug to be
found which was acknowledged by the author

• It took DART 22 minutes to find this bug

oSIP

I oSIP: Telephone over IP library

I Tested external functions

I Found many functions not checking NULL pointers

I Found denial of service in parser

I Request too large a stack frame
I Return of alloca not checked

I “Bugs” fixed by developers

I Intuition: specifications make this technique much better

17/20

• oSIP is essentially a library implementing telephone and other
multi-media stuff over IP

• The authors tested the external library functions

• First, they found many functions which crash when passed a NULL
pointer because the function seemed to assume the pointers were
non-null

• The authors moved onto looking at more functions in the program
and found a potential way to crash the library

• The crash involved an input allocating too much space on the stack;
the library does not check the return of the alloca call, which could
be NULL, causing a crash

• Because there is not a clear specification, the authors were not sure
if these were real bugs, but they note that the parser issue was fixed
by the developers

• Though the authors do not mention it, this points at one of the
issues of making a practical directed testing framework which is that
the tool produces more meaningful results if there is a specification
present

oSIP

I oSIP: Telephone over IP library

I Tested external functions

I Found many functions not checking NULL pointers

I Found denial of service in parser

I Request too large a stack frame
I Return of alloca not checked

I “Bugs” fixed by developers

I Intuition: specifications make this technique much better

17/20

• oSIP is essentially a library implementing telephone and other
multi-media stuff over IP

• The authors tested the external library functions

• First, they found many functions which crash when passed a NULL
pointer because the function seemed to assume the pointers were
non-null

• The authors moved onto looking at more functions in the program
and found a potential way to crash the library

• The crash involved an input allocating too much space on the stack;
the library does not check the return of the alloca call, which could
be NULL, causing a crash

• Because there is not a clear specification, the authors were not sure
if these were real bugs, but they note that the parser issue was fixed
by the developers

• Though the authors do not mention it, this points at one of the
issues of making a practical directed testing framework which is that
the tool produces more meaningful results if there is a specification
present

oSIP

I oSIP: Telephone over IP library

I Tested external functions

I Found many functions not checking NULL pointers

I Found denial of service in parser

I Request too large a stack frame
I Return of alloca not checked

I “Bugs” fixed by developers

I Intuition: specifications make this technique much better

17/20

• oSIP is essentially a library implementing telephone and other
multi-media stuff over IP

• The authors tested the external library functions

• First, they found many functions which crash when passed a NULL
pointer because the function seemed to assume the pointers were
non-null

• The authors moved onto looking at more functions in the program
and found a potential way to crash the library

• The crash involved an input allocating too much space on the stack;
the library does not check the return of the alloca call, which could
be NULL, causing a crash

• Because there is not a clear specification, the authors were not sure
if these were real bugs, but they note that the parser issue was fixed
by the developers

• Though the authors do not mention it, this points at one of the
issues of making a practical directed testing framework which is that
the tool produces more meaningful results if there is a specification
present

oSIP

I oSIP: Telephone over IP library

I Tested external functions

I Found many functions not checking NULL pointers

I Found denial of service in parser

I Request too large a stack frame
I Return of alloca not checked

I “Bugs” fixed by developers

I Intuition: specifications make this technique much better

17/20

• oSIP is essentially a library implementing telephone and other
multi-media stuff over IP

• The authors tested the external library functions

• First, they found many functions which crash when passed a NULL
pointer because the function seemed to assume the pointers were
non-null

• The authors moved onto looking at more functions in the program
and found a potential way to crash the library

• The crash involved an input allocating too much space on the stack;
the library does not check the return of the alloca call, which could
be NULL, causing a crash

• Because there is not a clear specification, the authors were not sure
if these were real bugs, but they note that the parser issue was fixed
by the developers

• Though the authors do not mention it, this points at one of the
issues of making a practical directed testing framework which is that
the tool produces more meaningful results if there is a specification
present

oSIP

I oSIP: Telephone over IP library

I Tested external functions

I Found many functions not checking NULL pointers

I Found denial of service in parser
I Request too large a stack frame

I Return of alloca not checked

I “Bugs” fixed by developers

I Intuition: specifications make this technique much better

17/20

• oSIP is essentially a library implementing telephone and other
multi-media stuff over IP

• The authors tested the external library functions

• First, they found many functions which crash when passed a NULL
pointer because the function seemed to assume the pointers were
non-null

• The authors moved onto looking at more functions in the program
and found a potential way to crash the library

• The crash involved an input allocating too much space on the stack;
the library does not check the return of the alloca call, which could
be NULL, causing a crash

• Because there is not a clear specification, the authors were not sure
if these were real bugs, but they note that the parser issue was fixed
by the developers

• Though the authors do not mention it, this points at one of the
issues of making a practical directed testing framework which is that
the tool produces more meaningful results if there is a specification
present

oSIP

I oSIP: Telephone over IP library

I Tested external functions

I Found many functions not checking NULL pointers

I Found denial of service in parser
I Request too large a stack frame
I Return of alloca not checked

I “Bugs” fixed by developers

I Intuition: specifications make this technique much better

17/20

• oSIP is essentially a library implementing telephone and other
multi-media stuff over IP

• The authors tested the external library functions

• First, they found many functions which crash when passed a NULL
pointer because the function seemed to assume the pointers were
non-null

• The authors moved onto looking at more functions in the program
and found a potential way to crash the library

• The crash involved an input allocating too much space on the stack;
the library does not check the return of the alloca call, which could
be NULL, causing a crash

• Because there is not a clear specification, the authors were not sure
if these were real bugs, but they note that the parser issue was fixed
by the developers

• Though the authors do not mention it, this points at one of the
issues of making a practical directed testing framework which is that
the tool produces more meaningful results if there is a specification
present

oSIP

I oSIP: Telephone over IP library

I Tested external functions

I Found many functions not checking NULL pointers

I Found denial of service in parser
I Request too large a stack frame
I Return of alloca not checked

I “Bugs” fixed by developers

I Intuition: specifications make this technique much better

17/20

• oSIP is essentially a library implementing telephone and other
multi-media stuff over IP

• The authors tested the external library functions

• First, they found many functions which crash when passed a NULL
pointer because the function seemed to assume the pointers were
non-null

• The authors moved onto looking at more functions in the program
and found a potential way to crash the library

• The crash involved an input allocating too much space on the stack;
the library does not check the return of the alloca call, which could
be NULL, causing a crash

• Because there is not a clear specification, the authors were not sure
if these were real bugs, but they note that the parser issue was fixed
by the developers

• Though the authors do not mention it, this points at one of the
issues of making a practical directed testing framework which is that
the tool produces more meaningful results if there is a specification
present

oSIP

I oSIP: Telephone over IP library

I Tested external functions

I Found many functions not checking NULL pointers

I Found denial of service in parser
I Request too large a stack frame
I Return of alloca not checked

I “Bugs” fixed by developers

I Intuition: specifications make this technique much better

17/20

• oSIP is essentially a library implementing telephone and other
multi-media stuff over IP

• The authors tested the external library functions

• First, they found many functions which crash when passed a NULL
pointer because the function seemed to assume the pointers were
non-null

• The authors moved onto looking at more functions in the program
and found a potential way to crash the library

• The crash involved an input allocating too much space on the stack;
the library does not check the return of the alloca call, which could
be NULL, causing a crash

• Because there is not a clear specification, the authors were not sure
if these were real bugs, but they note that the parser issue was fixed
by the developers

• Though the authors do not mention it, this points at one of the
issues of making a practical directed testing framework which is that
the tool produces more meaningful results if there is a specification
present

Overview

Introduction

Path Constraints

Experimental Results

Conclusions and Questions

18/20

Next, I’ll go over some conclusions and open questions in the paper

Open Questions

I How to handle concurrent programs?

I Branches and thread schedules?
I Assertion Guided Symbolic Execution of Multithreaded

Programs, Shengjian Guo, Markus Kusano, Chao Wang,
Zijiang Yang, Aarti Gupta. FSE ’15

I How to handle unbounded programs?

I How scalable is this approach?

19/20

• The paper leaves some questions open at the time of writing

• First, the authors are only considering branches as a source of
non-determinism in the program

• In the case of a concurrent program, it is not clear how the
technique could simultaneously generate inputs to check both the
branches and thread schedules

• There was, however, an interesting sounding paper by some cool
authors in this years FSE extending the DART approach to efficiently
handle multi-threaded programs

• Second, the analysis is bounded: its not clear how or if a technique
such as this can be used in an unbounded analysis

• And third, it is not too clear how scalable this analysis is

• For example, if there are very complicated functions or those using
very long loops or recurions, its not clear if the constraints generated
by the analysis will be solvable

Open Questions

I How to handle concurrent programs?
I Branches and thread schedules?

I Assertion Guided Symbolic Execution of Multithreaded
Programs, Shengjian Guo, Markus Kusano, Chao Wang,
Zijiang Yang, Aarti Gupta. FSE ’15

I How to handle unbounded programs?

I How scalable is this approach?

19/20

• The paper leaves some questions open at the time of writing

• First, the authors are only considering branches as a source of
non-determinism in the program

• In the case of a concurrent program, it is not clear how the
technique could simultaneously generate inputs to check both the
branches and thread schedules

• There was, however, an interesting sounding paper by some cool
authors in this years FSE extending the DART approach to efficiently
handle multi-threaded programs

• Second, the analysis is bounded: its not clear how or if a technique
such as this can be used in an unbounded analysis

• And third, it is not too clear how scalable this analysis is

• For example, if there are very complicated functions or those using
very long loops or recurions, its not clear if the constraints generated
by the analysis will be solvable

Open Questions

I How to handle concurrent programs?
I Branches and thread schedules?
I Assertion Guided Symbolic Execution of Multithreaded

Programs, Shengjian Guo, Markus Kusano, Chao Wang,
Zijiang Yang, Aarti Gupta. FSE ’15

I How to handle unbounded programs?

I How scalable is this approach?

19/20

• The paper leaves some questions open at the time of writing

• First, the authors are only considering branches as a source of
non-determinism in the program

• In the case of a concurrent program, it is not clear how the
technique could simultaneously generate inputs to check both the
branches and thread schedules

• There was, however, an interesting sounding paper by some cool
authors in this years FSE extending the DART approach to efficiently
handle multi-threaded programs

• Second, the analysis is bounded: its not clear how or if a technique
such as this can be used in an unbounded analysis

• And third, it is not too clear how scalable this analysis is

• For example, if there are very complicated functions or those using
very long loops or recurions, its not clear if the constraints generated
by the analysis will be solvable

Open Questions

I How to handle concurrent programs?
I Branches and thread schedules?
I Assertion Guided Symbolic Execution of Multithreaded

Programs, Shengjian Guo, Markus Kusano, Chao Wang,
Zijiang Yang, Aarti Gupta. FSE ’15

I How to handle unbounded programs?

I How scalable is this approach?

19/20

• The paper leaves some questions open at the time of writing

• First, the authors are only considering branches as a source of
non-determinism in the program

• In the case of a concurrent program, it is not clear how the
technique could simultaneously generate inputs to check both the
branches and thread schedules

• There was, however, an interesting sounding paper by some cool
authors in this years FSE extending the DART approach to efficiently
handle multi-threaded programs

• Second, the analysis is bounded: its not clear how or if a technique
such as this can be used in an unbounded analysis

• And third, it is not too clear how scalable this analysis is

• For example, if there are very complicated functions or those using
very long loops or recurions, its not clear if the constraints generated
by the analysis will be solvable

Open Questions

I How to handle concurrent programs?
I Branches and thread schedules?
I Assertion Guided Symbolic Execution of Multithreaded

Programs, Shengjian Guo, Markus Kusano, Chao Wang,
Zijiang Yang, Aarti Gupta. FSE ’15

I How to handle unbounded programs?

I How scalable is this approach?

19/20

• The paper leaves some questions open at the time of writing

• First, the authors are only considering branches as a source of
non-determinism in the program

• In the case of a concurrent program, it is not clear how the
technique could simultaneously generate inputs to check both the
branches and thread schedules

• There was, however, an interesting sounding paper by some cool
authors in this years FSE extending the DART approach to efficiently
handle multi-threaded programs

• Second, the analysis is bounded: its not clear how or if a technique
such as this can be used in an unbounded analysis

• And third, it is not too clear how scalable this analysis is

• For example, if there are very complicated functions or those using
very long loops or recurions, its not clear if the constraints generated
by the analysis will be solvable

Conclusion

I Function-test generation

I Fully automated

I Faster than random testing

Questions?

20/20

• So, in conclusion I presented DART, a tool to generate test inputs
for functions in order to automated the creation of unit tests

• The technique is fully automated in that the developer does not need
to hand generate test inputs to exercise new paths in a function

• The experimental results showed that the technique is faster than
simple random testing

• With that, I’ll take any questions

Conclusion

I Function-test generation

I Fully automated

I Faster than random testing

Questions?

20/20

• So, in conclusion I presented DART, a tool to generate test inputs
for functions in order to automated the creation of unit tests

• The technique is fully automated in that the developer does not need
to hand generate test inputs to exercise new paths in a function

• The experimental results showed that the technique is faster than
simple random testing

• With that, I’ll take any questions

Conclusion

I Function-test generation

I Fully automated

I Faster than random testing

Questions?

20/20

• So, in conclusion I presented DART, a tool to generate test inputs
for functions in order to automated the creation of unit tests

• The technique is fully automated in that the developer does not need
to hand generate test inputs to exercise new paths in a function

• The experimental results showed that the technique is faster than
simple random testing

• With that, I’ll take any questions

Conclusion

I Function-test generation

I Fully automated

I Faster than random testing

Questions?

20/20

• So, in conclusion I presented DART, a tool to generate test inputs
for functions in order to automated the creation of unit tests

• The technique is fully automated in that the developer does not need
to hand generate test inputs to exercise new paths in a function

• The experimental results showed that the technique is faster than
simple random testing

• With that, I’ll take any questions

Conclusion

I Function-test generation

I Fully automated

I Faster than random testing

Questions?

20/20

• So, in conclusion I presented DART, a tool to generate test inputs
for functions in order to automated the creation of unit tests

• The technique is fully automated in that the developer does not need
to hand generate test inputs to exercise new paths in a function

• The experimental results showed that the technique is faster than
simple random testing

• With that, I’ll take any questions

	Introduction
	Path Constraints
	Experimental Results
	Conclusions and Questions

