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Introduction

I Testing makes up 50% of software development cost

I Failures cost $60 billion per year in USA alone

I Software testing is important

I Software testing is. . .

I Hard
I Boring
I Tedious

I Automated techniques

http://vignette4.wikia.nocookie.net/spongebob/images/9/9f/Money Krabs CS.jpg
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• Overall, testing makes up around fifty percent of the cost of
developing software

• Complementing this is the fact that software failures in the USA cost
around 60 billion dollars per year

• So, because people like money, software testing is important in order
to both reduce the testing cost and prevent costly failures

• But, software testing, from a developers standpoint, is also hard,
boring, and tedious

• Because of this, techniques to automatically test a program can help
reduce developer burden and costs
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Introduction

1 int mul2(int x) {

2 return 2 * x;

3 }

4 int h(int x, int y) {

5 if (x != y) {

6 if (mul2(x) == x + 10) {

7 abort();

8 }

9 }

I Automated random testing

I Hard to guess
constraints (x == 10)

I Directed random testing

I Specify reachability as
constraints

3/20

• To better illustrate why program testing is hard, and the difficulties
with current automated techniques, we’ll look at this example
program

• Here, we have the function h which we would like to to test. We’ve
encoded an error statement in h using the abort statement

• There are two conditions guarding the reachability of the abort
statement: x must not be equal to y and the result of calling mul2
on x must be equal to x + 10

• Random testing is one automated testing technique: it simply applies
random inputs to the function under test with hopes to execute
different paths

• Random testing is good since it requires very low overhead but it
often has difficulty exercising new paths within the program

• Specifically, if we examine look at a condition such as x equal to 10,
with 32 bit integers there is a 232 chance to guess this correctly

• Obviously, with such a low probability, random testing will likely end
up having low coverage on this function

• An alternative approach is to use what the authors refer to as
directed testing

• In this way, the inputs required to reach a specific point in the
program are specified as a set of constraints who’s satisfiability
represent inputs to reach a certain location
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I Input One:
x = 20, y = 1000

I Second branch not
taken: 40 6= 20 + 10

I Path constraint:
(x 6= y) ∧ (2x 6= x + 10)

I Direct tester to new paths

I Alter path constraint &
solve
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(x 6= y) ∧ (2x=x + 10)
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• To better understand this concept of directed testing, we’ll continue
looking at this example

• Consider we randomly generate the following inputs to h: x equal to
20 and y equal to 1000

• With this input, the first branch, x not equal to y, will be taken, but
the second one will not since the result of mul2 returns 40 and 40 is
not equal to 30

• Given this programs execution, we can capture its path constraint:
the path constraint is a logical formula capturing all program inputs
resulting in the same path

• Specifically, this path constraint specifies that x is not equal to y and
2x is not equal to x + 10: intuitively, we can see these conditions
represent the first branch being taken and the second one not being
taken

• Since our goal is to increase testing coverage of the function, we’d
like to direct the tester to explore a new path through the function

• To do this, we can negate the last condition in the previous
constraint, in other words, try to find an input to satisfy the first and
second branch conditions

• Passing this equation to a solver, we can get a solution that x equals
10 and y equals 1000 which are valid inputs to reach the abort
statement and find the bug
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I Randomly apply function inputs
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I Static method to identify interfaces

I Fully automated
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• This brings us to the authors contributions

• The authors present a framework combining random testing with
directed testing

• The approach works just as in the previous example: they first
randomly apply function inputs, gather a set of path constraints on
an explored trace, and then use a solver to generate new inputs
guiding the program along a new path

• Along with this testing technique, they also present a technique to
identify interfaces, or, locations which should be tested, in the
program

• In this way, the authors analysis becomes fully automated without
requiring the developers to do anything
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Next, I’ll go over how the authors generate path constraints during testing



Path Constraints: Overview

1. Execute the program with random inputs

2. Collect path-constraints of execution

3. Negate a condition to generate new inputs

4. Repeat

7/20

• Here again is an overivew of the exploration technique used by the
authors

• First, they execute the program with random inputs

• During the execution of the program, they collect the path
constraints visited by the dynamic execution

• To collect these paths constraints, they instrument each statement in
the program and model the semantics of the statements

• Next, given the path constraints from one execution, they negate one
of the branches in the path constraint and pass the formula to a
solver

• The solver then attempts to find a valuation of the program inputs
such that the path constraint is satisfied, or, in other words, values
of the program inputs such that the new path is expored

• They then use these newly generated inputs to the program and
re-execute the program and repeat the process

• To make this more clear, I’ll go over an example
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of the branches in the path constraint and pass the formula to a
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• The solver then attempts to find a valuation of the program inputs
such that the path constraint is satisfied, or, in other words, values
of the program inputs such that the new path is expored

• They then use these newly generated inputs to the program and
re-execute the program and repeat the process

• To make this more clear, I’ll go over an example



Path Constraints: Example (1)

1 int f(int x, int y) {

2 int z = y;

3 bool c1 = x == z;

4 if (c1) {

5 int t2 = x + 10;

6 bool c2 = y == t2;

7 if (c2) {

8 abort();

9 }

10 }

11 }

I Concrete input:
x = 10, y = 20

8/20

• Here is an example program which is slightly more complicated than
the one we previously looked at because it has some side effects.

• To understand the path-constraint generation approach, we’ll go
through this program line-by-line and look at how it evolves
symbolically

• First, if we look at the concrete execution with these inputs, the first
branch is not taken since x is not equal to z. So, the first test halts
after the check of the first branch

• During the concrete execution of the program, the authors build a
symbolic representation of all the variables

• Before the execution of the function, the program inputs are
unconstrained, here, I assume 32 bit integers

• After executing line 2, the value of z is updated to be the value of y

• Similarly, the value of c1 is updated to be the value of the expression
x equal to y. Notice that this sets the value of c to be the boolean
value represented by the expression z equal to y

• Finally, since during the concrete execution the branch was not taken
we negate the condition in the branch to generate the path
constraint for the first run
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• Here is an example program which is slightly more complicated than
the one we previously looked at because it has some side effects.

• To understand the path-constraint generation approach, we’ll go
through this program line-by-line and look at how it evolves
symbolically
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• Finally, since during the concrete execution the branch was not taken
we negate the condition in the branch to generate the path
constraint for the first run



Path Constraints: Example (2)

1 int f(int x, int y) {

2 int z = y;

3 bool c1 = x == z;
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6 bool c2 = y == t2;
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∧ z := y

∧ c1 := (x = z)

I Old constraint: ¬c1
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• After generating the symbolic expression for the variables along with
the path constraint, the next step is to generate a new input to the
program in order to explore a new path

• Since we’ve only seen one branch, the only new choice we can make
is to explore inside this branch, or, to find program inputs such that
c1 is true

• To do this, we use the symbolic values for all the variables and
conjunct it with the path constraint we want to build a new logic
formula

• Next, we can ask a solver to find a satisfying assignment to this
formula: the satisfying assignment is a valuation of x and y such that
all the constraints hold

• One such solution is that x and y are both equal to zero

• The key thing to notice is that the logic formula we’ve constructed is
such that a satisfying assignment represents values of the inputs
which are guaranteed to reach the branch we are interested in



Path Constraints: Example (2)

1 int f(int x, int y) {

2 int z = y;

3 bool c1 = x == z;

4 if (c1) {

5 int t2 = x + 10;

6 bool c2 = y == t2;

7 if (c2) {

8 abort();

9 }

10 }

11 }

I After line 3:

− 231 ≤ x ≤ 231 − 1

∧ −231 ≤ y ≤ 231 − 1

∧ z := y

∧ c1 := (x = z)

I Old constraint: ¬c1
I New constraint: c1

9/20

• After generating the symbolic expression for the variables along with
the path constraint, the next step is to generate a new input to the
program in order to explore a new path

• Since we’ve only seen one branch, the only new choice we can make
is to explore inside this branch, or, to find program inputs such that
c1 is true

• To do this, we use the symbolic values for all the variables and
conjunct it with the path constraint we want to build a new logic
formula

• Next, we can ask a solver to find a satisfying assignment to this
formula: the satisfying assignment is a valuation of x and y such that
all the constraints hold

• One such solution is that x and y are both equal to zero

• The key thing to notice is that the logic formula we’ve constructed is
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• Since we’ve only seen one branch, the only new choice we can make
is to explore inside this branch, or, to find program inputs such that
c1 is true

• To do this, we use the symbolic values for all the variables and
conjunct it with the path constraint we want to build a new logic
formula
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• One such solution is that x and y are both equal to zero

• The key thing to notice is that the logic formula we’ve constructed is
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• After generating the symbolic expression for the variables along with
the path constraint, the next step is to generate a new input to the
program in order to explore a new path

• Since we’ve only seen one branch, the only new choice we can make
is to explore inside this branch, or, to find program inputs such that
c1 is true

• To do this, we use the symbolic values for all the variables and
conjunct it with the path constraint we want to build a new logic
formula

• Next, we can ask a solver to find a satisfying assignment to this
formula: the satisfying assignment is a valuation of x and y such that
all the constraints hold

• One such solution is that x and y are both equal to zero

• The key thing to notice is that the logic formula we’ve constructed is
such that a satisfying assignment represents values of the inputs
which are guaranteed to reach the branch we are interested in



Path Constraints: Example (3)

1 int f(int x, int y) {

2 int z = y;

3 bool c1 = x == z;

4 if (c1) {

5 int t2 = x + 10;

6 bool c2 = y == t2;

7 if (c2) {

8 abort();

9 }

10 }

11 }

I Concrete input:
x = 0, y = 0

I c1 = x == z = 1

I t2 = x + 10 = 10

I c2 = y == t2 = 0
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• On the next iteration, we use the inputs we obtained previously to
re-execute the program concretely

• During the concrete execution, we enter the first if-branch, then, we
calculate the value of t2 which is x plus ten which evaluates to 10

• The value of c2 check is y is equal to t2 which evaluates to false
• So, the results of the second iteration are that the first branch is

taken and the second branch is not taken
• Again, during the concrete execution we can generate a symbolic

representation of the program. The symbolic representation this time
is the same as in the previous iteration except it includes the
evaluations of t2 and c2

• Again, this execution has a path constraint which is c1 and not c2.
To generate the next path constraint we again flip one of the
conditions and produce a new logic formula with the desired path
conditions we want

• As a human, solving the constraints on the input variables to reach
this location is already, at least for me, becoming non-trivial

• Luckily, we can use a solver to solve this formula: the result from the
solver is that the formula is unsatisfiable: this means that there does
not exist a value for the inputs to cause the abort to be reached

• For this function at least, the procedure is sound: we’ve formally
proved that the abort statement in this function can never be reached
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• On the next iteration, we use the inputs we obtained previously to
re-execute the program concretely

• During the concrete execution, we enter the first if-branch, then, we
calculate the value of t2 which is x plus ten which evaluates to 10

• The value of c2 check is y is equal to t2 which evaluates to false
• So, the results of the second iteration are that the first branch is

taken and the second branch is not taken
• Again, during the concrete execution we can generate a symbolic

representation of the program. The symbolic representation this time
is the same as in the previous iteration except it includes the
evaluations of t2 and c2

• Again, this execution has a path constraint which is c1 and not c2.
To generate the next path constraint we again flip one of the
conditions and produce a new logic formula with the desired path
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• As a human, solving the constraints on the input variables to reach
this location is already, at least for me, becoming non-trivial

• Luckily, we can use a solver to solve this formula: the result from the
solver is that the formula is unsatisfiable: this means that there does
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• Now that I’ve gone over an example of their technique, I’ll go over a
high level intuition of how their technique works and try to relate it
back to stuff we’ve seen so far

• Like most of the analyses we’ve seen so far, their technique uses
transfer functions

• To keep track of the symbolic values of all the variables, the authors
define transfer functions for all statements in the program

• For example, if we encounter an assignment statement during the
execution, we use a transfer function which takes as input a symbolic
representation, S, and returns a new symbolic representation which is
the same as S except the value of x is assigned to z

• Defining transfer functions for every type of statement in the
program allows for the analysis to operate on arbitrary sequences of
expressions
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I Bug hunting
I Not proof generation

I No false alarms:

I Detected bugs are guarnateed to exist in the actual
program
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• Since in general programs may be infinite, for example, in the
presence of infinite loops, the analysis cannot generally handle all
types of programs

• This is because we eventually need to produce a logic formula
representing a path through the program: this logic formula cannot
be infinitely long

• The solution to this problem is to only search through a bounded
depth of a program

• As a result, the authors analysis, in general, is under-approximated

• This means it should be used for bug hunting and not proof
generation

• However, because it is under-approximated, we have a nice side
effect that the analysis has no false alarms

• This means that any bug which is detected by the algorithm is
guaranteed to be a real bug
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Now that I’ve gone over a high-level intution behind their approach, I’ll

present the experimental results
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• The authors implemented their tool to test C programs

• They ran tests on a Pentium III processor running at 800 MHz

• They used a solver called lp solve to solve the constraint formulas

• And, they tested on three different programs: a small air conditioner
controller example, a crypto protocol, and an open source library
called oSIP
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AC-Controller

1 int is_room_hot, ac, is_door_closed;

2 void ac_controller(int message) {

3 if (message == 0) is_room_hot = 1;

4 if (message == 1) is_room_hot = 0;

5 if (message == 2) {

6 is_door_closed = 0;

7 ac = 0;

8 }

9 if (message == 3) {

10 is_door_closed = 1;

11 if (is_room_hot) ac = 1;

12 }

13 if (is_room_hot && is_door_closed

14 && !ac) {

15 abort();

16 }

17 }

I Random testing
does not work

I 232 × 232 = 264

number of
possibilities

I One leads to the
error

I Never finds the bug
after “hours”

I DART: less than
one second

15/20

• First, we can look at the source code of the AC controller

• The source code is very small but makes a serves as a good
comparison to randomized testing

• The program is buggy: the abort statement in the program is
reachable under certain program inputs

• First, to understand how this function was run you need to imagine
that this function can be called an arbitrary number of times with
different values for message

• It is essentially representing a state machine which causes transitions
based on the input to the function

• The abort statement in the program can be reached after applying
two messages: first passing 3 and then passing 0

• Because this bug takes at least two messages to manifest, the
chance for a random tester to find it is one out of 2 to the sixty four,
which is obviously very close to zero

• DART on the other hand, finds the bug in less than one second
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I C implementation (400 LOC)
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I Dart: 18 minutes to find error

I Re-ran on “fixed” version: found another bug

I 22 minutes

16/20

• Next, the authors looked at the C implementation of the
Needham-Schroeder protocol

• We do not need to consider the details of the protcol but is
essentially a way for two users to start a secure communication
channel

• The original algorithm contains a bug allowing an attacker to
impersonate a user

• They tested on a 400 line C implementation

• They constrained the environment, or, the actions acceptable by the
attacker to be as reasonable as the assumptions used in the paper
describing the fault in the protocol

• Given these assumptions, DART was able to reproduce the fault in
the protocol after 18 minutes of testing

• The author who originally reported the fault in the protocol proposed
a fix

• Re running dart on the fixed protocol lead to another bug to be
found which was acknowledged by the author

• It took DART 22 minutes to find this bug
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• oSIP is essentially a library implementing telephone and other
multi-media stuff over IP

• The authors tested the external library functions

• First, they found many functions which crash when passed a NULL
pointer because the function seemed to assume the pointers were
non-null

• The authors moved onto looking at more functions in the program
and found a potential way to crash the library

• The crash involved an input allocating too much space on the stack;
the library does not check the return of the alloca call, which could
be NULL, causing a crash

• Because there is not a clear specification, the authors were not sure
if these were real bugs, but they note that the parser issue was fixed
by the developers

• Though the authors do not mention it, this points at one of the
issues of making a practical directed testing framework which is that
the tool produces more meaningful results if there is a specification
present
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Next, I’ll go over some conclusions and open questions in the paper
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I How to handle concurrent programs?

I Branches and thread schedules?
I Assertion Guided Symbolic Execution of Multithreaded

Programs, Shengjian Guo, Markus Kusano, Chao Wang,
Zijiang Yang, Aarti Gupta. FSE ’15

I How to handle unbounded programs?

I How scalable is this approach?
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• The paper leaves some questions open at the time of writing

• First, the authors are only considering branches as a source of
non-determinism in the program

• In the case of a concurrent program, it is not clear how the
technique could simultaneously generate inputs to check both the
branches and thread schedules

• There was, however, an interesting sounding paper by some cool
authors in this years FSE extending the DART approach to efficiently
handle multi-threaded programs

• Second, the analysis is bounded: its not clear how or if a technique
such as this can be used in an unbounded analysis

• And third, it is not too clear how scalable this analysis is

• For example, if there are very complicated functions or those using
very long loops or recurions, its not clear if the constraints generated
by the analysis will be solvable
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• So, in conclusion I presented DART, a tool to generate test inputs
for functions in order to automated the creation of unit tests

• The technique is fully automated in that the developer does not need
to hand generate test inputs to exercise new paths in a function

• The experimental results showed that the technique is faster than
simple random testing

• With that, I’ll take any questions
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