
Modern Symbolic Execution
Austin Cory Bart

CS-6304 Program Analysis

11/10/2015

Papers

• Cadar et al, “Symbolic Execution for Software Testing in Practice – a
Preliminary Assessment”, ICSE 2011.

• C. Cadar & K. Sen, “Symbolic Execution for Software Testing: Three
Decades Later”, CACM, Feb 2013, p 82-90

Cristian Cadar
PhD from Stanford
Now at Imperial College London
KLEE, EXE

Koushik Sen:
PhD from University of Illinois at Urbana-Champaign

Now at UC Berkley
DART, Latest, CUTE, jCUTE, Jalangi

Outline

• Motivation

• Symbolic Execution Techniques
• EGT

• Concolic Testing

• Challenges
• Path Explosion

• Constraint Solving

• Concurrency

• Tools

Why Care?

• Automatic Software testing

• Systems and above

Execution Tree

Paqué, Daniel. "From Symbolic Execution to Concolic Testing.“ 2014
https://concurrency.cs.uni-kl.de/documents/Logics_Seminar_2014/SymbolicExecutionConcolicTesting.pdf

Concolic vs. EGT

Concolic

• Simultaneous Concrete and
Symbolic

• Needs initial concrete values

• Multiple runs

EGT

• Concrete values generated “on-
demand”

• No initial concrete values

• Forking execution

• More similar to vanilla Symbolic
Execution

Concolic Example #1

• Initial random input: {x=29, y=4}

• First run, A[false]:
• x0 != 2y0

• Negate conjunct, so x0 == 2y0

• New input: {x=8, y=4}

• Second Run, A[true] and B[false]:
• (x0 == 2y0) and (x0 <= y0+5)

• Negate new conjunct, so (x0 > y0+5)

• New input: {x=10, y=5}

• Third Run, A[true] and B[True]:
• (x0 == 2y0) and (x0 > y0+5)

• All conjuncts tested. Complete.

First

Second Third

A
x = z

B
x > y+5

{x=29, y=4}

{x=8, y=4} {x=10, y=5}

¬(x0 = 2y0) (x0 = 2y0)

(x0 = 2y0) and ¬(x0 <= y0+5) (x0 = 2y0) and (x0 <= y0+5)

Concolic Example #2

• Initial random input: {x=1, y=1}

• First run, Concrete Evaluation!, A[false]:
• x0 != 2

• Negate conjunct, so x0 == 2

• New input: {x=2, y=1}

• …

First

Second Third

A
x = z

B
x > y+5

{x=1, y=1}

{x=2, y=1} …

¬(x0 = 2) (x0 = 2)

(x0 = 2) and ¬(x0 <= y0+5) (x0 = 2) and (x0 <= y0+5)

(Executable, but source
code not available)

¬(x0 = bar(y0))
Unsolvable, but
concrete values to
the rescue!

Only one path
explorable

EGT Example

concrete

concrete

Symbolic but
simplified

Commonalities

• Overcome
• External code

• Hardware imprecision (e.g., floating points)

• Constraint Solver timeouts

• Sound, but not complete

• Automatic

Key Challenges
And their solutions

Problem 1: Path Explosion

Seo, Hyunmin, and Sunghun Kim. "How we get there: a context-guided search strategy in concolic testing." Proceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of Software Engineering. ACM, 2014.

void process(char input[3]) {

int counter = 0;

if (input[0] == 'a') counter++;

if (input[1] == 'b') counter++;

if (input[2] == 'c') counter++;

if (counter >= 3) success();

error();

}

Infinite Execution Paths

Solution 1.1: Heuristics

• Goal:
• High statement coverage

• High branch coverage

• User-guided

• Examples
• Distance (based on CFG)

• Few Previous Runs

• Randomness

• Evolutionary search

Solution 1.2: Select Statements

• Merge If-conditions into Select
statements

• Phi-node folding (if-conversion)
• Static-single assignment (SSA)

• Diamond-shaped if statements

• Uncondtionally execute and select
result

• Side-effects can occur!

• Passes the buck to the
Constraint Solver

Collingbourne, Peter, Cristian Cadar, and Paul HJ Kelly. "Symbolic crosschecking of floating-point and SIMD code." Proceedings of the

sixth conference on Computer systems. ACM, 2011.

Solutions 1.3, 1.4, 1.5: Other techniques

• Cache and reuse the analysis of lower-level functions
• Pre-/post- condition summaries

• Lazy Test Generation
• “The technique first explores, using dynamic symbolic execution, an

abstraction of the function under test by replacing each called function with
an unconstrained input.”

• Strlen becomes a symbolic input that can represent any integer

• Prune redundant paths
• Redundancy: same program path, same symbolic constraints

Problem 2: Constraint Solving

• NP Complete (although practical in practice)

• Dominates the runtime

Solution 2.1: Irrelevant Constraint Elimination

No relationship

Negated conjunct
for new inputs

Solution 2.2: Incremental Solving

• Cached constraint solutions

• Two situations:
• Subset of a cached constraint: Easy, use the cached inputs!

• Superset of a cached constraint: Test the inputs!

• “In practice, adding constraints often does not invalidate an existing
solution”

Problem 3: Memory Modelling

• 32-bit integer

• Pointers
• b[7] vs. b[i] vs. a[b[i]]

Problem 4: Handling Concurrency

• Complex Data Inputs

• Distributed Systems

• GPGPU Programs

• Race conditions cause interleaving explosion

Solution 4.1: “Race Detection
and Flipping Algorithm”
• Adaption of Concolic by Koushik Sen and Gul Agha

• Identify identical interleavings
• Race conditions are collected during execution alongside path constraints
• Race for two events if:

• Stem from different threads
• Both access the same memory location without locks
• Order permutable by changing thread scheduling

• Sequence of Triples: (thread, label, shared memory access type)
• Types of race conditions: sequential, shared-memory access precedence, causal and

race relation.

• Works by varying execution times

• Vector clocks (integer vectors) to record thread execution

Sen, Koushik, and Gul Agha. "A race-detection and flipping algorithm for automated testing of multi-threaded programs." Hardware and Software,

Verification and Testing. Springer Berlin Heidelberg, 2007. 166-182.

Tool Rundown

• DART: First concolic testing (C)

• CUTE: Multi-threaded DART, dynamic data structures (C)

• jCUTE: CUTE for Java

• CREST: Concolic testing for experimenting with heuristics (C)

• EXE: EGT approach for Bit-level accuracy using STP (C)

• KLEE: Concurrent states, external data, heavily extended (LLVM)

• SAGE: Microsoft Windows, uses fuzzing (x86 binaries)

• PEX: Microsoft, focuses on more pure symbolic (.NET)

Conclusions

• Mixing symbolic and concrete is useful

• Many successes

• But still a lot left to do
• Parallel

• Constraint Solving

• Memory models

• Heuristics

