
Slide 1

Hybrid Security Analysis of Web JavaScript Code
via Dynamic Partial Evaluation

Omer Tripp, Pietro Ferrara, Marco Pistoia
IBM Watson Research Center

ISSTA 2014

Presented by

Peeratham (Karn) Techapalokul

11/17/2015

ISSTA : Software Testing and Analysis
TAJ: Effective Taint Analysis of Web
Applications”, PLDI 2009

Slide 2 Logic is Migrating from Server to Client

https://www.owasp.org/images/f/f4/ASDC12-
Unraveling_some_of_the_Mysteries_around_DOMbased_XSS.pdf

This bar charts gives us the idea that
business logic is migrating from server
to client side.
Proportion of Line of codes in the
client-side is growing when comparing
web application in 2010 and 2005
This raises a growing security concerns
over the client side.

Slide 3
Client-side Web Application

• HTML (represented by XML DOM node tree)

• JavaScript embedded in HTML page

• modify style and content

• dynamically manipulate DOM elements

• modify DOM in unintended ways by hackers?

The client side code consists of
JavaScript embedded in HTML page
Javascript is used to dynamically
mainipute HTML elements or we call it
DOM (document object model)
We have learned that dynamic feature
of JavaScript make it very challenging
for static and dynamic analysis tool.

So making security analysis tool for
client-side web application is
challenging and that’s the problem
this paper tries to address

Slide 4
DOM-based Cross-site Scripting (DOM XSS)

EXPLOIT
client-

side
vulnerabi

lities

<HTML>
<TITLE>Welcome!</TITLE> Hi
<SCRIPT>
var pos=document.URL.indexOf("name=")+5;
document.write(document.URL.substring(pos,d
ocument.URL.length));
</SCRIPT>
Welcome to our system …
</HTML>

http://www.vulnerable.site/welcome.html?name=
<script>alert(document.cookie)</script>

http://www.vulnerable.site/welcome.html?name=Joe

Specifically, the paper address two
primary categories of client-side
vulnerabilities.
The first one is DOM-based cross-site
scripting.
The vulnerable client-side code is in
yellow box.
The goal of the code is to write some
text from the URL onto the screen of
the user by inserting it into the HTML
using JavaScript. However malicious
javascript can be injected into pages.

Malicious javascript can take control
over the web page.
The attacker can write javascript code
to steal important information
displayed on the page or secret
information from the page’s cookie
and send them the server owned by
hackers.

Slide 5
Open Redirect

Send malicious URL to victim
http://www.trusted.com/page.html?val=

evil.net

EXPLOIT
client-

side
vulnerabi

lities

<script>
…
var pos=document.URL.indexOf(’val=’)+4;
var

val=document.URL.substring(pos,document.URL.length);
document.location. href = val; // open redirect
…

</script>

http://www.trusted.com/page.html?val=http://www.some-trusted-web.com

Another example of vulnerability we
are considering is Open Redirect.
The code in the yellow box is unsafe
redirection as it does not check for
user-input URL.
This vulnerability is used in phishing
attacks to get users to visit malicious
sites without realizing it.

The user may assume that the link is
safe since the URL starts with trusted
url.
However, the user will then be
redirected to the attacker's web site
(evil.net)
which the attacker may have made to
appear very similar trusted.com.

Where the malicious site trick the user
to enter credential information.

Slide 6
Use taint analysis to detect?

1. var search_term = ‘login.html’ ;

2. var str = document.URL; // source

3. var url_check = str.indexOf(search_term);

4. if (url_check > −1) {

var result = str.substring (0, url_check);

5. result = result + ‘login.jsp’ + str.substring ((url_check +

search_term.length), str.length);

6. document.URL = result; // sink

}

Let’s take a look a more complex
example and how we can use taint
analysis to detect the vulnerability
This code performs redirection
the source is the URL of the web
which may contain user input as part
of the url
the sink is the statement performing
redirection

Traditional taint analysis such as
TaintDroid and TAJ would flag this
code as vulnerable because there is a
flow from source to sink. There is a
possibility that user-input can
influence redirection target.

Slide 7
Safe redirection

1. var search_term = ‘login.html’ ;

2. var str = document.URL; // source str = https://market.alcatel-

lucent.com/release/jsp/sso/login.html?fname=John&lname=Doe

3. var url_check = str.indexOf(search_term); //url_check = 50

4. if (url_check > −1) {

var result = str.substring (0, url_check); //result =

https://market.alcatel-lucent.com/release/jsp/sso/login.html

5. result = result + ‘login.jsp’ + str.substring ((url_check +

search_term.length), str.length); //result = https://market.alcatel-

lucent.com/release/jsp/sso/login.jsp?fname=John&lname=Doe

6. document.URL = result; } // sink

However when examine closely this is
safe redirection.

The analysis approach we just did is
what JSA the proposed tool in this
paper can perform and the tool would
also indicate no vulnerabilities found
in this case too.

So what make this possible?

Slide 8

Oracle (Web Crawler)
GET .../jsp/sso/login.html?fname=John&lname=Doe

Main idea: Hybrid Flow

Source rewriting
document.URL → ".../jsp/sso/login.html?".*

Specialized security analysis
e.g. Reachability analysis+ String Analysis

D
yn

am
ic

St
at

ic

Basically we need to know the string
value from DOM expression so DOM
information is available when we do
static analysis
So dynamic component of JSA is Web
Crawler collecting relevant DOM
information, and act as dynamic oracle

Also we need to take into account
unknown user-input value.
and a way to analyze string as it is
manipulated by the client-side code.
And that is the key component of JSA
tool.

source rewriting module replaces
DOM expressions with partially
concretized values
it represents user-controlled portions
abstractly as .* regular expression

JSA perform string analysis to track
abstract string value as it is being
manipulated
JSA report vulnerability if unsafe
abstract value flows into sink.

Slide 9
Contribution

• Novel hybrid security analysis of client-side Web
JavaScript code

• Apply partial evaluation to JavaScript based on dynamic
HTML environment to enable string analysis on abstract
string values

• Reduction of 94% in false alarms while no single
true positive is lost (compare with static taint
analysis)

Slide 10
Overview

• Introduction

• Background

• JSA
• JSA algorithm

• String Analysis

• Implementation & Evaluation

Slide 11
JSA Algorithm

• Inputs:
• call graph over JavaScript functions in the HTML page

collected by Web crawler

• dynamic oracle allows query of DOM expression values

• Outputs:
• a set of security vulnerabilities detected over call graph

Slide 12 JSA Algorithm

• scan call graph for sources and sinks
• sources : e.g. document.URL
• sinks: HTML rendering methods e.g.

document.getElementById(id).innerHTML = “…”;

• for each source and sink pair (st, st’)
• check reachability of data from source to sink

• NO; no further analysis is required
• if reachable: perform security analysis

Slide 13
Perform Security Analysis

• partially evaluate RHS DOM expression of sink by querying
dynamic oracle

• document.URL => http://www....

• abstract string value (concrete+abstract segments)

• perform string analysis(forward analysis) until reach fixpoint

• query set of all abstract values that may flow to the sink

• report unsafe abstract values

• repeat reachability and security analysis for all source and sink
pairs

conservatively treat user-input by
abstract away user input segment
from concrete input segment

Slide 14
String Analysis

• a refinement of taint analysis

• formally expressed as abstract interpretation

• string abstraction consists of a concrete prefix and a possibly
unknown suffix

• prefix = string representation + boolean flag indicating if prefix
has a suffix

• tracks abstract string values through local vars, procedure calls

• tracks integral values e.g. indexOf often used by substring
operation

Slide 15
String Analysis (cont’d)

• partition (P) is a set of prefixes (Prx) with same lower-case
representation

• Idx keep track of string index i.e. indexOf

• set of partitions (PPrx)

• define set of abstract semantics for string operations in
Javascript

Example: abstract semantics of x := ”str”

URL is case insensitive but string
searching is case sensitive
group different prefixes having same
lower-case representation in a
partition so prefixes can share data-
flow fact

Slide 16 Running Example
illustrating

abstract semantic

Slide 17
Overview

• Introduction

• Background

• JSA
• JSA algorithm

• String Analysis

• Implementation & Evaluation

Slide 18
Implementation

• Implemented JSA on top of WALA

• JSA currently integrated into IBM security AppScan
Standard Edition

• AppScan has built-in AppScan crawler which acts as
a dynamic oracle for JSA’s partial evaluation

JSA currently integrated into IBM
security AppScan Standard Edition
it’s a commercial black-box security
assessment product for testing both
server and client side of web
applications

Slide 19
Experimental Evaluation

• Compare JSA with two baselines:
1. AppScan combined with a taint-analysis engine for

static client-side security assessment

2. AppScan without JSA (using dynamic client-side testing
capabilities)

• 675 real-world websites (all Fortune 500 companies
and top 100 websites IT and security vendors)

• findings were classified as being true/false positive
by security experts

avoid almost all false alarms in static
approach in 1
get true findings more than dynamic
approach 2

Slide 20
JSA vs baseline Taint analysis

gain in accuracy is significant
every true report by static Taint
analysis appears in JSA report

JSA use average 3 seconds to analyze
webpage
Taint analysis complete in less than 2
sec

Slide 21
JSA vs baseline Black-box testing

• randomly select 60 out of 675 websites

the granularity is at website level and
not specific vulnerabilities
if the website has at least one false
positive vulnerability, then it’s counted
as one

JSA outperform dynamic client-side
testing in terms of coverage
JSA found 29 true positives vs 8 for
pure dynamic client–side testing
and 3 sec vs 30-60 secs per webpage

Slide 22

Thank you!

Questions?

