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Overview
Problem: 

Critical source-sink flow detection

Solution

Static information flow analysis +accurate analysis 

stubs (a static implementation to mimic android runtime 
environment with simplified APIs for analysis ) 

Experiment

Higher accuracy than FlowDroid
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Approaches:
Accurate Analysis Stubs:

1. ( simply-implement of Android Device): 1.3M + 70K LOC

Object-Sensitive Points-to Analysis:

1. Add more precision with context sensitivity

ICC- modeling :

1. JSA framework  to resolve string analysis.
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Accurate Analysis Stubs:
1. AOSP (Android Open Source Project) cannot 

model runtime behavior of Android applications.

2. Stubs(written) in Java, incompletely model the 
runtime behavior of model code, but keep 
semantics.

3. (Manually) add 3,176 native methods 
implementation, simplify 117 classes in standard 
library.
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………………..
…………

Call A(r1, r2, r3)
……………..
…………..

Accurate Analysis Stubs:
A(r1,r2,r3)
……r4=r1.a

…….r5 = r1.b
….

process(r3,r4, r5)

A(r1,r2,r3)
…

Original code
(a lot of code)

Stub code



Event and Callback Dispatch
1. “A runtime implementation 

that models component 
event.”

2. “Harness”.  
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Resolve Figure 1(a) ‘s 
problem

Onstop Oncreate Onpause

ADI 
(harness)



Event and Callback Dispatch
“Implement the callback 

registration method to invoke the 
application’s callback handler 
method with the appropriate 
arguments.”
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Resolve Figure 1(b) ‘s 
problem 

Handler 1
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ADI implementation
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Simply implementation
stub stub



Object-Sensitive Points-to Analysis
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Context -3 depth



ICC modeling 

1. Re-implement ICC model

2. Resolve explicit calls:    JSA (Java string analysis to 
find the string in an explicit call) – flow sensitive 
analyzer

3. Resolve implicit calls:   Parse Androidmanifest and 
record implicit intents + intentFilter
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Transforming ICC calls (dynamic -> static)
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“transform ICC initiation calls into appropriate method calls at the destination(s), 
linking the data flows between source and destination”
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ICC calls

urlPath Data

Data

Data

Oncreate -> ICCservice -> ICCSInk



DroidSafe tool

A forward data-flow 
analysis 

From source -> sink
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DroidBench Results
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Recall
Precision = find true flows/ total true flows
Recall =  find true flows / total find flows



Statistics of APAC apps
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APAC results
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Thanks
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The paper deploys a static analysis, why it always mention
“a runtime implementation” in the paper?

Discussions

Why do the authors have to implement so many APIs/methods 
by themselves instead of making some assumptions about these methods?

Explicitly resolve dynamic decisions with static analysis 

Precision and scalability


