
Information-Flow Analysis
of Android Applications in
DroidSafe

MICHAEL I . GORDON, DEOKHWAN KIM, JEFF PERKINS , L IMEI GILHAM ,
NGUYEN NGUYEN , AND MARTIN RINARD

NDSS 2014

PRESENTED BY KE T IAN

1

Outlines

Overview

Motivation

Approach/methodology

Experiment

Discussion

2

Overview
Problem:

Critical source-sink flow detection

Solution

Static information flow analysis +accurate analysis

stubs (a static implementation to mimic android runtime
environment with simplified APIs for analysis)

Experiment

Higher accuracy than FlowDroid

3

4

Motivation
urlPath S2

S18

Data

Data

S17

Data

Get-location

Src-sink

intent
Data

5

Motivation
urlPath S2

S7

Data

Data

S19

Data

Get-location S4
S21

Data
Call-back
+ data

intent
Data

6

Motivation

urlPath Data

Data

Data

Approaches:
Accurate Analysis Stubs:

1. (simply-implement of Android Device): 1.3M + 70K LOC

Object-Sensitive Points-to Analysis:

1. Add more precision with context sensitivity

ICC- modeling :

1. JSA framework to resolve string analysis.

7

Accurate Analysis Stubs:
1. AOSP (Android Open Source Project) cannot

model runtime behavior of Android applications.

2. Stubs(written) in Java, incompletely model the
runtime behavior of model code, but keep
semantics.

3. (Manually) add 3,176 native methods
implementation, simplify 117 classes in standard
library.

8

9

………………..
…………

Call A(r1, r2, r3)
……………..
…………..

Accurate Analysis Stubs:
A(r1,r2,r3)
……r4=r1.a

…….r5 = r1.b
….

process(r3,r4, r5)

A(r1,r2,r3)
…

Original code
(a lot of code)

Stub code

Event and Callback Dispatch
1. “A runtime implementation

that models component
event.”

2. “Harness”.

10

Resolve Figure 1(a) ‘s
problem

Onstop Oncreate Onpause

ADI
(harness)

Event and Callback Dispatch
“Implement the callback

registration method to invoke the
application’s callback handler
method with the appropriate
arguments.”

11

Resolve Figure 1(b) ‘s
problem

Handler 1
registratio

n1

Handler 2 registratio
n2

Event
callback

ADI implementation

12

Simply implementation
stub stub

Object-Sensitive Points-to Analysis

13

Context -3 depth

ICC modeling

1. Re-implement ICC model

2. Resolve explicit calls: JSA (Java string analysis to
find the string in an explicit call) – flow sensitive
analyzer

3. Resolve implicit calls: Parse Androidmanifest and
record implicit intents + intentFilter

14

Transforming ICC calls (dynamic -> static)

15

“transform ICC initiation calls into appropriate method calls at the destination(s),
linking the data flows between source and destination”

16

ICC calls

urlPath Data

Data

Data

Oncreate -> ICCservice -> ICCSInk

DroidSafe tool

A forward data-flow
analysis

From source -> sink

17

DroidBench Results

18

Recall
Precision = find true flows/ total true flows
Recall = find true flows / total find flows

Statistics of APAC apps

19

APAC results

20

Thanks

21

The paper deploys a static analysis, why it always mention
“a runtime implementation” in the paper?

Discussions

Why do the authors have to implement so many APIs/methods
by themselves instead of making some assumptions about these methods?

Explicitly resolve dynamic decisions with static analysis

Precision and scalability

