
Locating Faults Through Automated Predicate

Switching

Authored by Xiangyu Zhang, Neelam Gupta, Rajiv Gupta

The University of Arizona

ICSE 2006

Presented by Jing Pu

Authors
1

Neelam Gupta

The University of Arizona

 Motivation

 Approach

 Key Techniques

 Limitations

 Evaluation

 Conclusion

Outline
2

Motivation
3

 Finding Bugs

 Program output deviates from the expected output

 Program crash

 Techniques

 Automated debugging techniques – potential state changes

 searching is expensive

 Idea

 Switch outcome of some predicate at runtime – correct
erroneous output / eliminate crash – Important information

 Reduce the state search space - runtime predicate switching

Motivation Example
4

Why predicate Switching is a better approach?

 How to compute an output – Two parts: Data
Part, Select Part

 Data Part: Set of executed instructions which
compute data values that are involved in
computing output value. <1,4,5,9,10>

 Select Part: Set of predicates and statements
that compute values used by the predicates.
<1,2,7,3,8>

 Location of fault code:

• DP: dynamic data slices are relatively small

• SP: union the full dynamic slices, consider all
possible state changes — large

 Switching predicate – Overcome this problem

d

Approach
5

 Step 1: Examine failing run, determine output deviation
between incorrect and correct output, Locate execution
instance 𝐼𝑒 that produces the first erroneous output value.

 Step 2: Rerun program, generate Predicate Trace, perform
predicate instance ordering – LEFS/PRIOR

 Step 3: Search for a critical predicate, for each predicate
instance(P), rerun the program, use instrumented program to
switch P’s output (only one predicate switch at a time),
terminate search when program run succeeds

 Step 4: Based on critical predicate information, use
Bidirectional Chop to locate the set of potentially faulty
statements.

Predicate Instance Ordering
6

 Last Executed First Switched Ordering (LEFS)

 Based on the observation: execution of faulty code is

 often not far away from the fail point

 Prioritization-based Ordering (PRIOR)

 Partition predicates into high and low priority subsets using

 failure- Inducing chops algorithm

 Arrange the predicate instances in the high priority subset in the
order of increasing dependence distance rom the erroneous output

 Reference: N Gupta, H He, X Zhang, R Gupta, “Locating Faulty Code Using

Failure-Inducing Chops”, ASE 2005

8

Failure- Inducing chops algorithm :

1. use the delta debugging algorithm isolate argv[1] as the

minimal failure-inducing input difference

2. Use dynamic slicing to locate fault code

for each of the faulty outputs contains the faulty

statement 12

argv[1] is different

Forward slice on argv[1]

backward slices on bitter, sweet and sour

Dynamic Instrumentation
8

Divide a run into three phases, each phase has its unique
instrumentation:

 Phase One:

 from the beginning of the execution to the predicate instance

 of interest, instrument a counter at a predicate. When it

 counts down to 0, it reached the interest predicate instance,

 enter phase 2.

 Phase Two:

 Instrument program switch the outcome of the interest

 predicate instance.

 Phase Three:

 Dynamic instrumenter – Valgrind cleans up all the instrumentation,

 complete the program run.

Limitations
9

 Cannot handle complex bugs in the program –

 require switching multiple predicate instances

 Cannot handle significant bugs –

 some functionality is missing from the program

Evaluation
10

 Successful/Failed Searches

Where:

file name + source line

number at which the switched

predicate can be found

Which:

dynamic instance of the

predicate that was switched

False +ves:

the number of dynamic

predicate switches searched

11

Search time

taken by PRIOR

to locate the predicate instance switch

Locate potentially faulty code
12

Bidirectional Slice:

 the critical predicate outcome was wrong due to incorrect values used in its computation. –

backward slice of the critical predicate.

 changing the critical predicate outcome avoids the program crash – forward slice of the critical

predicate captures the code causing the crash.

failure-inducing chop:

 backward slice of an incorrect output value

 forward slice of the failure-inducing input difference

13

Sizes of Bidirectional Slice / Failure-Inducing Chop / Bidirectional Chop

Location of

fault code

Conclusions
14

 Critical predicates be very often located in many

real reported faulty programs

 They provide valuable clues to the cause of the

failure and hence assist in fault location.

Questions ?

Thanks!

15

