Locating Faults Through Automated Predicate
Switching

Authored by Xiangyu Zhang, Neelam Gupta, Rajiv Gupta

The University of Arizona

ICSE 2006

Avuthors

Xiangyu Zhang Neelam Gupta

University Scholar The University of Arizona
Associate Professor

Department of Computer Science
Purdue University
Phone:765-496-9415

E-mail: xvzhang at cs.purdue.edu

Rajiv Gupta

Professor

Dept. of Computer Science & Engineering
University of California Riverside

408 Winston Chung Hall

Riverside, CA 92521, USA

Voice: (951) B27-2558

Fax: (951) 827-4b43

E-mail: gupta@cs.ucr.edu

Qutline

Motivation
Approach
Key Techniques
Limitations
Evaluation

Conclusion

Motivation

Finding Bugs
Program output deviates from the expected output

Program crash

Techniques

Automated debugging techniques — potential state changes

searching is expensive

ldea

Switch outcome of some predicate at runtime — correct
erroneous output / eliminate crash — Important information

Reduce the state search space - runtime predicate switching

NERER NSV AW -

o= 2

Motivation Example

read(a.b);

¢ = f(a.b);
ife<5
then x=a+b
else x=a-b
endif

d = g(a.b);
ifd< 3
then y=a*b
else y=ab
endif
output(x+y)

Why predicate Switching is a better approach?

How to compute an output — Two parts: Data
Part, Select Part

Data Part: Set of executed instructions which
compute data values that are involved in
computing output value. <1,4,5,9,10>

Select Part: Set of predicates and statements

that compute values used by the predicates.
<1,2,7,3,8>

Location of fault code:
DP: dynamic data slices are relatively small

SP: union the full dynamic slices, consider all
possible state changes — large

Switching predicate — Overcome this problem

Approach

Step 1: Examine failing run, determine output deviation
between incorrect and correct output, Locate execution
instance [, that produces the first erroneous output value.

Step 2: Rerun program, generate Predicate Trace, perform
predicate instance ordering — LEFS/PRIOR

Step 3: Search for a critical predicate, for each predicate
instance(P), rerun the program, use instrumented program to
switch P’s output (only one predicate switch at a time),
terminate search when program run succeeds

Step 4: Based on critical predicate information, use
Bidirectional Chop to locate the set of potentially faulty
statements.

Predicate Instance Ordering

_ 6
1 Last Executed First Switched Ordering (LEFS)
Based on the observation: execution of faulty code is

often not far away from the fail point

1 Prioritization-based Ordering (PRIOR)

Partition predicates into high and low priority subsets using
failure- Inducing chops algorithm

Arrange the predicate instances in the high priority subset in the
order of increasing dependence distance rom the erroneous output

> Reference: N Gupta, H He, X Zhang, R Gupta, “Locating Faulty Code Using
Failure-Inducing Chops’, ASE 2005

= R I R R e N

| T S R S A T T T o T e T Sy ey e Y |
L Y i T = T I L I S B I e

A
-

I

[T S I O T
OhoLh de Lad

]
el

main(int arge, char *argv| |)
>

int red. green. blue. vellow;
it sweet sour.salty_ bitter:
it 1;

red = ato1 (argv[1]);
blue = ato1 (argv[2]);
green = ato1 (argv[3]):
vellow = ato1 (argv[4]):

Initial Inputs: inputl : =[1,582] -

*
input? : =[0,0,0,0] - /

input3 1 =[1,08.2] - x
inputd : =[0,0.82] -/ \

1-minimal failure-mducing inputs:

argv|[1] is different

Incorrect outputs at line 24: bitter sweet, sour

FwdSlice(input3, argu[1]) ={7,12,13,16, 17,18, 21,22 24}
Forward slice on argv[1] /

BwdSlice(input3, bitter@?24) = {7, 9,12, 14, 15,16, 17, 18,21, 22 24}
Failure-inducing Chop(input3, argt[l] Erziter'ﬁ'*lal} {T 12 lﬂ 1?’ 18,21, 22 24}

swasiice|input3, sweet@24) = {7,9,12,13, 24}
Failure-inducing Chop(input3, m‘gt[l] StLE*EtQ—Q—l} {7,12,13, 24}

red = 2*red; <Eimr red=5%red |
sweet = red* green:

SOUr =

1=10;

while (1< red) {
SOUT = S0Uf + green:
1=1+1;
i
salty = blue + yellow:
vellow = sour + 1:
bitter = yellow + green:

backward slices on bitter, sweet and sour a
BwdSlice(input3, sour@24)={7,9,12 14, 15,16, 17, 18,24}
Failure-inducing Chop(input3, arguv[1], sour@24)= {7,12, 16,17, 18, 24}

Failure- Inducing chops algorithm :

1. use the delta debugging algorithm isolate argv[1] as the
minimal failure-inducing input difference

2. Use dynamic slicing to locate fault code

printf ("%ad %ed %ed %ed'n". bitter sweet,

sour.salty):
return 0;

'

for each of the faulty outputs contains the faulty
statement 12

Dynamic Instrumentation

Divide a run into three phases, each phase has its unique
instrumentation:

Phase One:

from the beginning of the execution to the predicate instance
of interest, instrument a counter at a predicate. When it
counts down to O, it reached the interest predicate instance,
enter phase 2.

Phase Two:

Instrument program switch the outcome of the interest
predicate instance.

Phase Three:

Dynamic instrumenter — Valgrind cleans up all the instrumentation,
complete the program run.

Limitations
N

1 Cannot handle complex bugs in the program —

require switching multiple predicate instances

1 Cannot handle significant bugs —

some functionality is missing from the program

Evaluation

Program Found Where Which | False +ves
flex 2.5.319(a) ves gen.c (@ 1813 0 0
flex 2.5.319(b) no search failed

flex 2.5.319(c) no search failed

grep 2.5 ves grep.c (@ 532 0 0
grep 2.5.1 (a) ves search.c (@ 549 0 0
grep 2.5.1 (b) no search failed

grep 2.5.1 (c) ves dfa.c @ 2854 2 0
make 3.80 (a) ves read.c @ 6162 143 1
make 380 (b) ves remake.c (@ 652 1 0
bc-1.06 ves storage.c (@ 176 9 0
tar-1.13.25 ves prepargs.c (@ 81 0 0
tudy ves parser.c (@ 3496 0 0
s-flex-v4 ves flex.c (@ 2978 0 0
s-flex-v3 110 search failed — error in DP
s-flex-v6 10 search failed — error in DP
s-flex-v7 yes flex.c @ 9171 0 0
s-flex-vE yes Hex.c @ 11833 0 0
s-flex-vo yes flex.c @ 5046 0 0
s-flex-v10 yes flex.c @ 2687 1 0
s-flex-v11 yes flex.c (@ 3559 0 0

Successful /Failed Searches

Where:

file name + source line
number at which the switched
predicate can be found

Which:
dynamic instance of the
predicate that was switched

False +ves:
the number of dynamic
predicate switches searched

Program

PRIOR

flex 2.5.319(a)

2.51 sec

flex 2.5.319(b)

search failed (364 min)

flex 2.5.319(c)

search failed (274 min)

grep 2.5 8.83 sec

grep 2.5.1 (a) 2.59 sec

grep 2.5.1 (b) search failed (4 mn 28 sec)
grep 2.5.1 (c) 4 .46 sec

make 3.80 (a) 26.92 sec

make 3.80 (b) 30 mun 37 sec
be-1.06 0.49 sec
tar-1.13.25 2.83 sec

tidy 0.90 sec

s-Hex-v4 8.76 sec

s-flex-v5 search failed (96 min 20 sec)
s-flex-v6 search failed (3 min 56 sec)
s-Hex-v7 334 sec

s-Hlex-v8 34 .35 sec
s-Hlex-vo 34 .51 sec
s-Hlex-v10 2.76 sec
s-Hex-v11 2.56 sec

Search time

taken by PRIOR
to locate the predicate instance switch

Locate potentially faulty code

M o e e e e e e e, e o F - F =
B allure —* anjune .
T e e e s M . L - e,
g e s iy ey - o - Al .
N Inducing £z Inducing <5
o -\.__'-.__'\.__'-.__'\.;' 4 _q.':-.":-\.':\-.-\.\.\. _ﬁ‘. .'_: .:'_ .'_: .-.\."'\.
N Input S Input Smmssny
by o T, e o ':_'-._-\"\.;'-._-\"\.;'-.\.H'\.;'-. x':.._"-_"'.\.'-._'\-.\.'r,
ey A ;;-:."~;'-3.':~.'"'
) = ™ = " = - = " -
-'1.\. r Py e i iy i, T Ok .\._-\..\.
Critical e et 4 Critical
e e
Predicate =, Predicate
. e e e e e e o %,
B e i |
l'_‘E-\.-'-._-:'\."-\.\. ':\.'\. ._"-_-:'\-._'-._-:-\._L'-.\._-\.._'-._-:.-\.' -J-._ " :. :._ -
et e i P
e i 'H,_-_-._-\._-._-\. By i i Ty
e o R
= = = . e e o
i iy T T ._"' T,
__-'f'{'.:"' B Y |.‘IT[ZI]'IL‘IZ]'IJ'-. o :'_:':'\-.-"' I"I'J'DI'H."D[I": o
e e ey e T e T e T e
-.\.'-_-'\-.\.'-_.'\..\.'-..'\-.\.'-_-'\-.\.'-_. +
T, Value Value

(a) Bidirectional Slice (b} Failure—Inducing Chop (c) Bidirectional Chop

Bidirectional Slice:

» the critical predicate outcome was wrong due to incorrect values used in its computation. —
backward slice of the critical predicate.

» changing the critical predicate outcome avoids the program crash — forward slice of the critical
predicate captures the code causing the crash.

failure-inducing chop:

» backward slice of an incorrect output value

» forward slice of the failure-inducing input difference

Program

[EXEC | BiS (%EXEC) | FiChop (%EXEC) |

BiChop (*EXEC) | Where |

fex 25319(a) | 1871 | 225 (12.03%) 756 (13.68%) 27 (1.44%) | Pred.
flex 25319(b) | 2198 _ 102 (4.64%) 102 (4.64%) -
Aex 25319(c) | 2053 _ 5 (0.24%) 5 (0.24%) -
srep 2.5 1157 88 (7.61%) 731 (63.18%) 86 (7.43%) | Down
grep 2.5.1 (a) 509 111 (21.81%) 32 (6.29%) 25(491%) | Down
orep 251 (D) 1123 _ 599 (53.34%) 599 (53.34%) -
orep 251 (0) 1338 | 453 (33.86%) 12 (0.90%) 12(0.90%) | Up
make 3.80 (a) 3377 | 1372 (60.25%) 739 (32.45%) 739 (32.45%) | Up
make 3 80 (b) | 2740 | 1436 (52.41%) 1104 (40.29%) 1051 (38.36%) | Up
be-1.06 636 | 267 (41.98%) 102 (16.03%) 102 (16.03%) | Up
tar-1.13.25 445 | 117 (26.29%) 103 (23.15%) 45 (10.11%) | Down
tndy 1519 | 541 (35.62%) 164 (10.80%) 161 (10.60%) | Up
sHex-—v4 1631 37 (2.27%) 7 (0.43%) 7(043%) | Pred.
sHex5 1882 _ 544 (28 91%) 544 (28.91%) -
sHex-v6 424 - 156 (36.79%) 156 (36.79%) -
sHexv7 7045 | 836 (40.88%) 63 (3.08%) 63 (3.08%) | Up
sflex-v8 610 | 280 (45.90%) - 280 (45.90%) | Pred.
s-Hex-v9 1396 | 230 (1648%) 112 (8.02%) 112 (8.02%) | Pred.
sHexv10 1683 | 640 (38.03%) 574 (34.11%) 574 (34.11%) | Miss
sHexv1l 1749 37 (1.54%) 102 (5.83%) 77 (1.54%) | Up

Location of
fault code

Sizes of Bidirectional Slice / Failure-Inducing Chop / Bidirectional Chop

Conclusions

Critical predicates be very often located in many
real reported faulty programs

They provide valuable clues to the cause of the
failure and hence assist in fault location.

Questions ?

Thanks!

