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Motivation 
3 

 Finding Bugs 

 Program output deviates from the expected output 

 Program crash 

 

 Techniques 

    Automated debugging techniques – potential state changes  

    searching is expensive 

 

 Idea 

 Switch outcome of some predicate at runtime – correct 
erroneous output / eliminate crash – Important information 

 Reduce the state search space - runtime predicate switching  



Motivation Example 
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Why predicate Switching is a better approach? 

 How to compute an output – Two parts: Data 
Part, Select Part 

 Data Part: Set of executed instructions which 
compute data values that are involved in 
computing output value.     <1,4,5,9,10> 

 Select Part: Set of predicates and statements 
that compute values used by the predicates. 
<1,2,7,3,8> 

 Location of  fault code: 

• DP: dynamic data slices are relatively small 

• SP: union the full dynamic slices, consider all 
possible state changes — large  

 Switching predicate – Overcome this problem 
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Approach 
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 Step 1: Examine failing run, determine output deviation 
between incorrect and correct output, Locate execution 
instance 𝐼𝑒 that produces the first erroneous output value. 

 

 Step 2: Rerun program, generate Predicate Trace, perform 
predicate instance ordering – LEFS/PRIOR 

 

 Step 3: Search for a critical predicate, for each predicate 
instance(P), rerun the program, use instrumented program to 
switch P’s output (only one predicate switch at a time), 
terminate search when program run succeeds 

 

 Step 4: Based on critical predicate information,  use 
Bidirectional Chop to locate the set of potentially faulty 
statements. 

 



Predicate Instance Ordering 
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 Last Executed First Switched Ordering (LEFS) 

    Based on the observation: execution of faulty code is  

    often not far away from the fail point 
 

 Prioritization-based Ordering (PRIOR) 

 Partition predicates into high and low priority subsets using  

      failure- Inducing chops algorithm 

 Arrange the predicate instances in the high priority subset in the 
order of increasing dependence distance rom the erroneous output 

 

 Reference: N Gupta, H He, X Zhang, R Gupta, “Locating Faulty Code Using 

Failure-Inducing Chops”, ASE 2005 
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Failure- Inducing chops algorithm : 

1. use the delta debugging algorithm isolate argv[1] as the 

minimal failure-inducing input difference 

2. Use dynamic slicing to locate fault code 

 

 

for each of the faulty outputs contains the faulty 

statement 12 

argv[1] is different 

Forward slice on argv[1]  

backward slices on bitter, sweet and sour 



Dynamic Instrumentation 
8 

Divide a run into three phases, each phase has its unique 
instrumentation: 

 Phase One:  

    from the beginning of the execution to the predicate instance  

    of interest,  instrument a counter at a  predicate. When it  

    counts down to 0, it reached the interest predicate instance,  

    enter phase 2. 

 Phase Two: 

    Instrument program switch the outcome of the interest  

    predicate instance. 

 Phase Three: 

    Dynamic instrumenter – Valgrind cleans up all the instrumentation,  

    complete the program run. 

 

 

 



Limitations 
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 Cannot handle complex bugs in the program – 

   require switching multiple predicate instances 

 

 Cannot handle significant bugs – 

   some functionality is missing from the program 



Evaluation 
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                                                     Successful/Failed Searches 

 

Where:  

file name +  source line 

number at which the switched 

predicate can be found  

 

Which: 

dynamic instance of the 

predicate that was switched 

 

False +ves: 

the number of dynamic 

predicate switches searched 
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Search time 

taken by PRIOR  

to locate the predicate instance switch 



Locate potentially faulty code 
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Bidirectional Slice: 

 the critical predicate outcome was wrong due to incorrect values used in its computation. – 

backward slice of the critical predicate.  

 changing the critical predicate outcome avoids the program crash – forward slice of the critical 

predicate captures the code causing the crash. 

failure-inducing chop: 

 backward slice of an incorrect output value 

 forward slice of the failure-inducing input difference 
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Sizes of Bidirectional Slice / Failure-Inducing Chop / Bidirectional Chop 

Location of 

fault code 



Conclusions 
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 Critical predicates be very often located in many 

real reported faulty programs 
 

 They provide valuable clues to the cause of the 

failure and hence assist in fault location. 



Questions ? 
 

 

Thanks! 
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