
Locating Faults Through Automated Predicate

Switching

Authored by Xiangyu Zhang, Neelam Gupta, Rajiv Gupta

The University of Arizona

ICSE 2006

Presented by Jing Pu

Authors
1

Neelam Gupta

The University of Arizona

 Motivation

 Approach

 Key Techniques

 Limitations

 Evaluation

 Conclusion

Outline
2

Motivation
3

 Finding Bugs

 Program output deviates from the expected output

 Program crash

 Techniques

 Automated debugging techniques – potential state changes

 searching is expensive

 Idea

 Switch outcome of some predicate at runtime – correct
erroneous output / eliminate crash – Important information

 Reduce the state search space - runtime predicate switching

Motivation Example
4

Why predicate Switching is a better approach?

 How to compute an output – Two parts: Data
Part, Select Part

 Data Part: Set of executed instructions which
compute data values that are involved in
computing output value. <1,4,5,9,10>

 Select Part: Set of predicates and statements
that compute values used by the predicates.
<1,2,7,3,8>

 Location of fault code:

• DP: dynamic data slices are relatively small

• SP: union the full dynamic slices, consider all
possible state changes — large

 Switching predicate – Overcome this problem

d

Approach
5

 Step 1: Examine failing run, determine output deviation
between incorrect and correct output, Locate execution
instance 𝐼𝑒 that produces the first erroneous output value.

 Step 2: Rerun program, generate Predicate Trace, perform
predicate instance ordering – LEFS/PRIOR

 Step 3: Search for a critical predicate, for each predicate
instance(P), rerun the program, use instrumented program to
switch P’s output (only one predicate switch at a time),
terminate search when program run succeeds

 Step 4: Based on critical predicate information, use
Bidirectional Chop to locate the set of potentially faulty
statements.

Predicate Instance Ordering
6

 Last Executed First Switched Ordering (LEFS)

 Based on the observation: execution of faulty code is

 often not far away from the fail point

 Prioritization-based Ordering (PRIOR)

 Partition predicates into high and low priority subsets using

 failure- Inducing chops algorithm

 Arrange the predicate instances in the high priority subset in the
order of increasing dependence distance rom the erroneous output

 Reference: N Gupta, H He, X Zhang, R Gupta, “Locating Faulty Code Using

Failure-Inducing Chops”, ASE 2005

8

Failure- Inducing chops algorithm :

1. use the delta debugging algorithm isolate argv[1] as the

minimal failure-inducing input difference

2. Use dynamic slicing to locate fault code

for each of the faulty outputs contains the faulty

statement 12

argv[1] is different

Forward slice on argv[1]

backward slices on bitter, sweet and sour

Dynamic Instrumentation
8

Divide a run into three phases, each phase has its unique
instrumentation:

 Phase One:

 from the beginning of the execution to the predicate instance

 of interest, instrument a counter at a predicate. When it

 counts down to 0, it reached the interest predicate instance,

 enter phase 2.

 Phase Two:

 Instrument program switch the outcome of the interest

 predicate instance.

 Phase Three:

 Dynamic instrumenter – Valgrind cleans up all the instrumentation,

 complete the program run.

Limitations
9

 Cannot handle complex bugs in the program –

 require switching multiple predicate instances

 Cannot handle significant bugs –

 some functionality is missing from the program

Evaluation
10

 Successful/Failed Searches

Where:

file name + source line

number at which the switched

predicate can be found

Which:

dynamic instance of the

predicate that was switched

False +ves:

the number of dynamic

predicate switches searched

11

Search time

taken by PRIOR

to locate the predicate instance switch

Locate potentially faulty code
12

Bidirectional Slice:

 the critical predicate outcome was wrong due to incorrect values used in its computation. –

backward slice of the critical predicate.

 changing the critical predicate outcome avoids the program crash – forward slice of the critical

predicate captures the code causing the crash.

failure-inducing chop:

 backward slice of an incorrect output value

 forward slice of the failure-inducing input difference

13

Sizes of Bidirectional Slice / Failure-Inducing Chop / Bidirectional Chop

Location of

fault code

Conclusions
14

 Critical predicates be very often located in many

real reported faulty programs

 They provide valuable clues to the cause of the

failure and hence assist in fault location.

Questions ?

Thanks!

15

