Context-Sensitive Points-to Analysis: Is It Worth It?
CC 2006

Ondrej Lhotak Laurie Hendren
Presented by Markus Kusano

September 15, 2015

Motivation e The main goal of this study was to investigate if context-sensitivity improves the precision
of inter-procedural analyses for object oriented programs

» Does context-sensitivity improve precision? e As we've already seen, there are many different types of context-sensitivity
e This begs the question as to which type of context-sensitivity performs the best
e Finally, it would be interesting to know how many contexts an analysis produces

e The number of contexts may relate to both the precision and scalability of an analysis

Motivation

» Does context-sensitivity improve precision?

» Which type of context-sensitivity is the best?

The main goal of this study was to investigate if context-sensitivity improves the precision
of inter-procedural analyses for object oriented programs

As we've already seen, there are many different types of context-sensitivity
This begs the question as to which type of context-sensitivity performs the best
Finally, it would be interesting to know how many contexts an analysis produces

The number of contexts may relate to both the precision and scalability of an analysis

Motivation

» Does context-sensitivity improve precision?
» Which type of context-sensitivity is the best?

» How many contexts does an analysis produce?

The main goal of this study was to investigate if context-sensitivity improves the precision
of inter-procedural analyses for object oriented programs

As we've already seen, there are many different types of context-sensitivity
This begs the question as to which type of context-sensitivity performs the best
Finally, it would be interesting to know how many contexts an analysis produces

The number of contexts may relate to both the precision and scalability of an analysis

Contributions

» Java points-to comparison

The authors contributions are answers to the previous questions

Their comparison focuses on the effectiveness of different context-sensitivities for analyzing
Java programs

They implemented four different analyses within the same framework
The first is a context insensitive analysis

The second is a call-site sensitive algorithm using context strings
The third is an object sensitive analysis

And the fourth is a technique using the length of acyclic call-graph paths as the maxinum
call-site abstraction size

Their analysis is both qualitative and quantitative

The qualitative results come from statistical summarizations of the effectiveness of the
analysis

They also show qualitative examples of types of code-patterns where the analyses show
variations in effectiveness

Contributions

» Java points-to comparison
» Comparison of four analyses:

The authors contributions are answers to the previous questions

Their comparison focuses on the effectiveness of different context-sensitivities for analyzing
Java programs

They implemented four different analyses within the same framework
The first is a context insensitive analysis

The second is a call-site sensitive algorithm using context strings
The third is an object sensitive analysis

And the fourth is a technique using the length of acyclic call-graph paths as the maxinum
call-site abstraction size

Their analysis is both qualitative and quantitative

The qualitative results come from statistical summarizations of the effectiveness of the
analysis

They also show qualitative examples of types of code-patterns where the analyses show
variations in effectiveness

Contributions

» Java points-to comparison
» Comparison of four analyses:
Context insensitive

The authors contributions are answers to the previous questions

Their comparison focuses on the effectiveness of different context-sensitivities for analyzing
Java programs

They implemented four different analyses within the same framework
The first is a context insensitive analysis

The second is a call-site sensitive algorithm using context strings
The third is an object sensitive analysis

And the fourth is a technique using the length of acyclic call-graph paths as the maxinum
call-site abstraction size

Their analysis is both qualitative and quantitative

The qualitative results come from statistical summarizations of the effectiveness of the
analysis

They also show qualitative examples of types of code-patterns where the analyses show
variations in effectiveness

Contributions

» Java points-to comparison

» Comparison of four analyses:

Context insensitive
Call-site sensitive

The authors contributions are answers to the previous questions

Their comparison focuses on the effectiveness of different context-sensitivities for analyzing
Java programs

They implemented four different analyses within the same framework
The first is a context insensitive analysis

The second is a call-site sensitive algorithm using context strings
The third is an object sensitive analysis

And the fourth is a technique using the length of acyclic call-graph paths as the maxinum
call-site abstraction size

Their analysis is both qualitative and quantitative

The qualitative results come from statistical summarizations of the effectiveness of the
analysis

They also show qualitative examples of types of code-patterns where the analyses show
variations in effectiveness

Contributions

» Java points-to comparison

» Comparison of four analyses:

Context insensitive
Call-site sensitive
Object sensitive

The authors contributions are answers to the previous questions

Their comparison focuses on the effectiveness of different context-sensitivities for analyzing
Java programs

They implemented four different analyses within the same framework
The first is a context insensitive analysis

The second is a call-site sensitive algorithm using context strings
The third is an object sensitive analysis

And the fourth is a technique using the length of acyclic call-graph paths as the maxinum
call-site abstraction size

Their analysis is both qualitative and quantitative

The qualitative results come from statistical summarizations of the effectiveness of the
analysis

They also show qualitative examples of types of code-patterns where the analyses show
variations in effectiveness

Contributions

» Java points-to comparison

» Comparison of four analyses:
Context insensitive
Call-site sensitive

Object sensitive
Acyclic Call-graph Paths (ZCWL)

The authors contributions are answers to the previous questions

Their comparison focuses on the effectiveness of different context-sensitivities for analyzing
Java programs

They implemented four different analyses within the same framework
The first is a context insensitive analysis

The second is a call-site sensitive algorithm using context strings
The third is an object sensitive analysis

And the fourth is a technique using the length of acyclic call-graph paths as the maxinum
call-site abstraction size

Their analysis is both qualitative and quantitative

The qualitative results come from statistical summarizations of the effectiveness of the
analysis

They also show qualitative examples of types of code-patterns where the analyses show
variations in effectiveness

Contributions

» Java points-to comparison
» Comparison of four analyses:

Context insensitive

Call-site sensitive

Object sensitive

Acyclic Call-graph Paths (ZCWL)

» Quantitative comparison

The authors contributions are answers to the previous questions

Their comparison focuses on the effectiveness of different context-sensitivities for analyzing
Java programs

They implemented four different analyses within the same framework
The first is a context insensitive analysis

The second is a call-site sensitive algorithm using context strings
The third is an object sensitive analysis

And the fourth is a technique using the length of acyclic call-graph paths as the maxinum
call-site abstraction size

Their analysis is both qualitative and quantitative

The qualitative results come from statistical summarizations of the effectiveness of the
analysis

They also show qualitative examples of types of code-patterns where the analyses show
variations in effectiveness

Contributions

» Java points-to comparison
» Comparison of four analyses:
Context insensitive
Call-site sensitive
Object sensitive
Acyclic Call-graph Paths (ZCWL)
» Quantitative comparison
Statistical summaries

The authors contributions are answers to the previous questions

Their comparison focuses on the effectiveness of different context-sensitivities for analyzing
Java programs

They implemented four different analyses within the same framework
The first is a context insensitive analysis

The second is a call-site sensitive algorithm using context strings
The third is an object sensitive analysis

And the fourth is a technique using the length of acyclic call-graph paths as the maxinum
call-site abstraction size

Their analysis is both qualitative and quantitative

The qualitative results come from statistical summarizations of the effectiveness of the
analysis

They also show qualitative examples of types of code-patterns where the analyses show
variations in effectiveness

Contributions

» Java points-to comparison
» Comparison of four analyses:

Context insensitive

Call-site sensitive

Object sensitive

Acyclic Call-graph Paths (ZCWL)

Quantitative comparison

v

Statistical summaries

v

Qualitative comparison

The authors contributions are answers to the previous questions

Their comparison focuses on the effectiveness of different context-sensitivities for analyzing
Java programs

They implemented four different analyses within the same framework
The first is a context insensitive analysis

The second is a call-site sensitive algorithm using context strings
The third is an object sensitive analysis

And the fourth is a technique using the length of acyclic call-graph paths as the maxinum
call-site abstraction size

Their analysis is both qualitative and quantitative

The qualitative results come from statistical summarizations of the effectiveness of the
analysis

They also show qualitative examples of types of code-patterns where the analyses show
variations in effectiveness

Contributions

» Java points-to comparison
» Comparison of four analyses:

Context insensitive

Call-site sensitive

Object sensitive

Acyclic Call-graph Paths (ZCWL)

Quantitative comparison

v

Statistical summaries

v

Qualitative comparison
Code patterns showing variation

The authors contributions are answers to the previous questions

Their comparison focuses on the effectiveness of different context-sensitivities for analyzing
Java programs

They implemented four different analyses within the same framework
The first is a context insensitive analysis

The second is a call-site sensitive algorithm using context strings
The third is an object sensitive analysis

And the fourth is a technique using the length of acyclic call-graph paths as the maxinum
call-site abstraction size

Their analysis is both qualitative and quantitative

The qualitative results come from statistical summarizations of the effectiveness of the
analysis

They also show qualitative examples of types of code-patterns where the analyses show
variations in effectiveness

Next, I'll provide a brief background on the different analyses the authors
studied

Background

e Luckily, we've already looked at almost all the analyses the authors studied

Background: Abstractions

e The authors investigate the effects of two different types of abstractions: calling context,

» Calling context and pointer allocation or heap abstractions

e |'ll go over the high level details of both of these techniques

e Luckily, we've already looked at almost all the analyses the authors studied

Background: Abstractions

e The authors investigate the effects of two different types of abstractions: calling context,

» Calling context and pointer allocation or heap abstractions

» Pointer allocation (heap) e I'll go over the high level details of both of these techniques

Background: Calling Context Abstraction

» Call-site context sensitivity

We've seen presentations about different calling-context abstractions

The first, call-site context sensitivity represents the calling context based on the location
where the call was invoked

In receiving-object context sensitivity, the context is based on the object on which the
method is invoked

In both of these cases, the context information is represented using bounded strings

This is required to ensure termination because in general, the context information could be
infinite, for example, if the program uses recursion

The authors look at two different ways to bound the length of the context information
The first is to use a fix bound k to limit the length

The second is to use a bound from the longest path in the call-graph where
strongly-connected components are merged.

The authors refer to this second approach based on the creating authors names, ZCWL

Background: Calling Context Abstraction

» Call-site context sensitivity

» Receiving-object context sensitivity

We've seen presentations about different calling-context abstractions

The first, call-site context sensitivity represents the calling context based on the location
where the call was invoked

In receiving-object context sensitivity, the context is based on the object on which the
method is invoked

In both of these cases, the context information is represented using bounded strings

This is required to ensure termination because in general, the context information could be
infinite, for example, if the program uses recursion

The authors look at two different ways to bound the length of the context information
The first is to use a fix bound k to limit the length

The second is to use a bound from the longest path in the call-graph where
strongly-connected components are merged.

The authors refer to this second approach based on the creating authors names, ZCWL

Background: Calling Context Abstraction

» Call-site context sensitivity
» Receiving-object context sensitivity
» Bounded by finite length strings

We've seen presentations about different calling-context abstractions

The first, call-site context sensitivity represents the calling context based on the location
where the call was invoked

In receiving-object context sensitivity, the context is based on the object on which the
method is invoked

In both of these cases, the context information is represented using bounded strings

This is required to ensure termination because in general, the context information could be
infinite, for example, if the program uses recursion

The authors look at two different ways to bound the length of the context information
The first is to use a fix bound k to limit the length

The second is to use a bound from the longest path in the call-graph where
strongly-connected components are merged.

The authors refer to this second approach based on the creating authors names, ZCWL

Background: Calling Context Abstraction

» Call-site context sensitivity

» Receiving-object context sensitivity

» Bounded by finite length strings
Use fix bound k

We've seen presentations about different calling-context abstractions

The first, call-site context sensitivity represents the calling context based on the location
where the call was invoked

In receiving-object context sensitivity, the context is based on the object on which the
method is invoked

In both of these cases, the context information is represented using bounded strings

This is required to ensure termination because in general, the context information could be
infinite, for example, if the program uses recursion

The authors look at two different ways to bound the length of the context information
The first is to use a fix bound k to limit the length

The second is to use a bound from the longest path in the call-graph where
strongly-connected components are merged.

The authors refer to this second approach based on the creating authors names, ZCWL

Background: Calling Context Abstraction

» Call-site context sensitivity
» Receiving-object context sensitivity
» Bounded by finite length strings

Use fix bound k
Longest non-cyclic path in the call-graph (ZCWL)

We've seen presentations about different calling-context abstractions

The first, call-site context sensitivity represents the calling context based on the location
where the call was invoked

In receiving-object context sensitivity, the context is based on the object on which the
method is invoked

In both of these cases, the context information is represented using bounded strings

This is required to ensure termination because in general, the context information could be
infinite, for example, if the program uses recursion

The authors look at two different ways to bound the length of the context information
The first is to use a fix bound k to limit the length

The second is to use a bound from the longest path in the call-graph where
strongly-connected components are merged.

The authors refer to this second approach based on the creating authors names, ZCWL

Background: Calling Context Abstraction

2 A obj = new AQ);

» Context-insensitive: 0,

An orthogonal decision is how to abstractly the object returned by an allocation operation

In many of the previous analyses, we considered each allocation site to return one single
abstract object

Essentially, this meant we would create a point-to set for each object allocated on each line
This approach considers the heap in a context-insensitive way

Looking at this example we can see the creation of an object on line two. We can represent
this allocation as an object o0,

An alternative approach is to use either the calling-context or receiving-object context for
pointer allocations

For example, suppose this allocation occurs in calling context c;.
We can instead represent the allocation as the pair (ci, 02)
In this way, we treat each allocation in every context as distinct

A similar abstraction can be done using the receiving object

Background: Ca”mg Context Abstraction e An orthogonal decision is how to abstractly the object returned by an allocation operation

e In many of the previous analyses, we considered each allocation site to return one single
abstract object

U e Essentially, this meant we would create a point-to set for each object allocated on each line
2 A obj = new AQ);

e This approach considers the heap in a context-insensitive way

e Looking at this example we can see the creation of an object on line two. We can represent

. . this allocation as an object o
» Context-insensitive: 0,) 2

» Calling-context ¢; . An' alternative 'approach is to use either the calling-context or receiving-object context for
pointer allocations

e For example, suppose this allocation occurs in calling context c;.
e We can instead represent the allocation as the pair (¢, 0;)

e In this way, we treat each allocation in every context as distinct

A similar abstraction can be done using the receiving object

Background: Calling Context Abstraction

2 A obj = new AQ);

» Context-insensitive: 0,
» Calling-context ¢;

» Calling-context Heap Abstraction: (¢, 0,)

An orthogonal decision is how to abstractly the object returned by an allocation operation

In many of the previous analyses, we considered each allocation site to return one single
abstract object

Essentially, this meant we would create a point-to set for each object allocated on each line
This approach considers the heap in a context-insensitive way

Looking at this example we can see the creation of an object on line two. We can represent
this allocation as an object o0,

An alternative approach is to use either the calling-context or receiving-object context for
pointer allocations

For example, suppose this allocation occurs in calling context c;.
We can instead represent the allocation as the pair (ci, 02)
In this way, we treat each allocation in every context as distinct

A similar abstraction can be done using the receiving object

Benchmarks

Total number of | Executed methods
Benchmark | classes methods | app. +lib.
compress 41 476 56 463
db 32 440 51 483
jack 86 812 291 739
javac 209 2499 778 1283
jess 180 1482 | 395 846
mpegaudio 88 872 | 222 637
mirt 55 574 182 616
soot-c 731 3962 | 1055 1549
sablecc 342 2309 | 1034 1856
polyglot 502 5785 | 2037 3093
antlr 203 3154 | 1099 1783
bloat 434 6125 | 138 1010
chart 1077 14966 854 2790
jython 270 4915 | 1004 1858
pmd 1546 14086 | 1817 2581
ps 202 1147 285 945

The authors performed their analysis on a set of programs from a variety of different
benchmark suites

Their analysis included all application and library code except for the Java standard library
On the far left we can see the total number of classes and methods

The authors also then executed the benchmarks and counted the number of methods
executed

The left column labeled “app” shows the number of methods executed excluding the Java
standard library

The far right column shows the number of methods including the standard library

Next, we'll start looking at the results starting with the number of
contexts produced by the different abstractions

Results
Number of Contexts

Cou nting Contexts e To count the number of contexts, the authors consider pairs of methods and calling
contexts as a single “context”

» Count method—context pairs e For example, consider the object-sensitive abstraction

e If we have some object abstraction o and two of its methods m; and my, the authors count
the invocations of m; and m;, with the same object abstraction as a single context

Cou nting Contexts e To count the number of contexts, the authors consider pairs of methods and calling
contexts as a single “context”

» Count method—context pairs e For example, consider the object-sensitive abstraction

» Object-abstraction o and methods m; and m» e If we have some object abstraction o and two of its methods m; and m», the authors count

the invocations of m; and m;, with the same object abstraction as a single context

Cou nting Contexts e To count the number of contexts, the authors consider pairs of methods and calling
contexts as a single “context”

» Count method—context pairs e For example, consider the object-sensitive abstraction

» Object-abstraction o and methods m; and m» e If we have some object abstraction o and two of its methods m; and m», the authors count

the invocations of m; and m, with the same object abstraction as a single context
» Two contexts: (my,0), and (my, 0) ! 2 ’ &

Context Sizes e As we'll see in a second, the authors used varying bound sizes for each analysis

e The bound size is simply represented as an integer
» Bounded size of context information (1,2,3)

» ZCWL bound

» 1H: size one bound for calling-context and heap abstraction

e They also used the ZCWL bound computed using the call-graph
e The call-graph used was created from the context-insensitive analysis

e Finally, when the authors say “1H"” they use a size one calling-context and a size-one heap
abstraction

Number of Contexts

object-sensitive call site

Benchmark | insens. 1 2 3 1H 1 2 1H ZCWL
compress 2596 | 13.7 113 1517 13465 237 65| 29x107
db 2613 | 13.7 115 1555 134 |65 236 65| 7.9x10%
jack 2869 | 13.8 156 1872 132 | 68 220 68| 2.7x 107
javac 3780 | 15.8 297 13289 156 | 8.4 244 84

jess 3216 | 19.0 305 5394 186 [67 207 67| 6.1x 108
mpegaudio 2793 | 13.0 107 1419 127 (63 221 63| 44x10°
mirt 2738 | 13.3 108 1447 13.1 | 6.6 226 6.6 | 1.2x10°
soot-c 4837 | 11.1 168 4010 109 |82 198 82

sablecc 5608 | 10.8 116 1792 105 | 55 126 5.5

polyglot 5616 | 11.7 149 2011 112|171 144 7.1 10130
antir 3897 [150 309 8110 147[96 191 96| 48 x10°
bloat 5237 | 143 291 140 | 89 159 89| 3.0x 108
chart 7069 | 223 500 219 | 7.0 335

jython 4401 | 18.8 384 183 | 6.7 162 6.7 | 2.1 x 101
pmd 7219 | 134 283 5607 129 | 6.6 239 6.6

ps 3874 | 133 271 24967 131 (9.0 224 9.0| 2.0x 10°

This table shows the results comparing the number of contexts for the different abstractions

On the far right, “insen” shows the number of “contexts” for the context-insensitive
analysis

Since the context-insensitive analysis, conceptually, has a single context for each method
invocation, this column is simply the number of method invocations

The values in the columns to the right are all showing the number of contexts as a multiple
of insens

For example, the 1 object sensitive analysis has 13.7 times the number of contexts as the
insen analysis

Columns which are blank indicate the system ran out of memory

The results show that there is a very large increase in memory as the amount of context
information increases

This means that explicitly representing the context information for large programs will not
scale

Next, we'll look at results investigating the number of equivalent contexts

Results

Equivalent Contexts

Equivalent Contexts e The authors further examined all the method—context pairs to investigate which of the
pairs was equivalent

» Method—context pairs: (ml, cl), (m27 c2) e They define equivalence of two pairs with methods m; and m, and context ¢; and ¢, to
require that the two methods are the same and for all pointer variables in the method, the
points-to set of the point is the same in both contexts

e In essence, this notion of equivalence means that if two pairs are equivalent, we would have
been better off only keeping one of the contexts to save memory

Equivalent Contexts e The authors further examined all the method—context pairs to investigate which of the
pairs was equivalent

» Method—context pairs: (m1, Cl)y (m27 c2) e They define equivalence of two pairs with methods m; and m, and context ¢; and ¢, to

. . . require that the two methods are the same and for all pointer variables in the method, the
» Two method—context pairs are equivalent if: : - .
points-to set of the point is the same in both contexts

e In essence, this notion of equivalence means that if two pairs are equivalent, we would have
been better off only keeping one of the contexts to save memory

Equivalent Contexts e The authors further examined all the method—context pairs to investigate which of the
pairs was equivalent

» Method—context pairs: (m1, Cl)y (m27 c2) e They define equivalence of two pairs with methods m; and m, and context ¢; and ¢, to

. . . require that the two methods are the same and for all pointer variables in the method, the
» Two method—context pairs are equivalent if:

points-to set of the point is the same in both contexts
mip = my

e In essence, this notion of equivalence means that if two pairs are equivalent, we would have
been better off only keeping one of the contexts to save memory

Equivalent Contexts e The authors further examined all the method—context pairs to investigate which of the
pairs was equivalent

» Method—context pairs: (my, ¢1), (my,) e They define equivalence of two pairs with methods m; and my and context ¢; and ¢, to
require that the two methods are the same and for all pointer variables in the method, the

» Two method—context pairs are equivalent if: : - .
points-to set of the point is the same in both contexts

mip = my
For all pointer variables p in my, the points-to set of p is the same in ¢; and
(&}

e In essence, this notion of equivalence means that if two pairs are equivalent, we would have
been better off only keeping one of the contexts to save memory

Equivalent Contexts e The authors further examined all the method—context pairs to investigate which of the
pairs was equivalent

» Method—context pairs: (my, ¢1), (my,) e They define equivalence of two pairs with methods m; and my and context ¢; and ¢, to
- T meieoceasnieg: sale are centvElEm 1 require that the two methods are the same and for all pointer variables in the method, the
P q ' points-to set of the point is the same in both contexts
mip = my
For all pointer variables p in my, the points-to set of p is the same in ¢; and e In essence, this notion of equivalence means that if two pairs are equivalent, we would have
c ' been better off only keeping one of the contexts to save memory
2

» Equivalent pairs means context information does not provide extra information

Equivalent Contexts

object-sensitive call site

Benchmark | insens. ! 2 3 1H 1 2 1H | ZCWL
compress 2597 8.4 99 113 1211 |24 39 49 33
db 2614 8.5 99 114 121 |24 39 5.0 33
jack 2870 | 86 102 11.6 119 |24 39 5.0 34
javac 3781 | 104 177 338 143 |27 53 54

jess 3217 | 89 106 120 139 |26 42 5.0 3.9
mpegaudio 2794 8.1 94 108 115 |24 38 48 33
mitrt 2739 8.3 9.7 11.1 118 |25 4.0 49 34
soot-c 4838 | 7.1 137 184 98|26 42 48
sablecc-| 5609 6.9 8.4 9.6 95123 36 39

polyglot 5617 7.9 94 108 102 |24 3.7 47 33
antir 3898 94 121 138 13225 41 52 4.3
bloat 5238 | 102 446 129 | 2.8 49 52 6.7
chart 7070 | 10.0 174 182 | 2.7 48

jython 4402 9.9 559 156 | 2.5 43 46 4.0
pmd 7220 | 7.6 146 17.0 11.0 |24 42 42

ps 3875 8.7 99 11.0 120 |26 4.0 52 4.4

This table shows the number of equivalence classes for all the techniques examined

Again, the number of equivalence classes shows how beneficial the extra context
information was: less equivalence classes means the context-information did not provide
extra precision

Again, the columns of all the context-sensitive analyses are multiples of the insens column.

Here, we can see the object sensitive analysis creates more equivalance classes, or, that it is
able to partition the results into more non-equivalant groups

This means the object-sensitive abstraction may be better at providing extra precision
using the context information compared to the call-site abstraction

Also, we can see the number of equivalence classes does not increase too much as the size
of the context increases

This means that the analysis results do not improve too much with larger contexts

Interestingly, we see that ZCWL preforms rather poorly since the effective context-size
bound used by the analysis is always much larger than 2

However, the ZCWL method merges call-graph nodes in strongly-connected components
and treats them in a context-insensitive manner

The authors found that a large porition of the call-graph of many of the bench marks is a
ctronolhv-cannected comnonent reciilting in the ZCW/I1 method +0 dAeocrade +60 2 cantevt

Next, we'll look at the applicability of the different context-sensitivities in
performing client analyses

Client Analyses
Call-graph Construction
Virtual Function Resolution
Cast Safety

Reachable Methods

object-sensitive call site actually
Benchmark | CHA | insens. 1 2 3 1H 1 2 1H | executed
compress 90 59 59 59 59 59 59 59 59 56
db 95 65 64 64 64 64 65 64 65 51
jack 348 317 313 313 313 313 316 313 316 291
javac 1185 | 1154 | 1147 1147 1147 1147 | 1147 1147 1147 778
jess 683 630 | 629 629 629 623 | 629 629 629 395
mpegaudio | 306 255 251 251 251 251 | 251 251 251 222
mtrt 217 189 | 186 186 186 186 | 187 187 187 182
soot-c 2395 2273 | 2264 2264 2264 2264 | 2266 2264 2266 1055
sablecc-| 1904 | 1744 | 1744 1744 1744 1731 | 1744 1744 1744 1034
polyglot 2540 2421 | 2419 2419 2419 2416 | 2419 2419 2419 2037
antlr 1374 1323 | 1323 1323 1323 1323 | 1323 1323 1323 1099
bloat 2879 2464 | 2451 2451 2451 | 2451 2451 2451 138
chart 3227 2081 | 2080 2080 2031 | 2080 2080 854
jython 2007 | 1695 | 1693 1693 1683 | 1694 1693 1694 1004
pmd 4997 4528 | 4521 4521 4521 4509 | 4521 4521 4521 1817
ps 840 835 | 835 835 835 834 | 835 835 835 285

This table shows the number of reachable methods created by the object and call-site
sensitive analyses

For each benchmark, the most precise and least-expensive analysis has been highlighted in
bold

Overall, we can see the points-to based approach can significantly improve over CHA
The 1-object-sensitive analysis can slightly improve over the insensitive analysis

The call-site sensitive analysis can approach the performance of the object-sensitive
analysis but often requires larger context information

Potentially Polymorphic Functions

object-sensitive call site

Benchmark | CHA | insens. 1 2 3 IH 1 2 1H
compress 16 3 3 3 3 3 3 3 3
db 36 5 4 4 4 4 5 4 5
jack 474 25 23 23 23 22 24 23 24
javac 908 737 720 720 720 720| 720 720 720
jess 121 45 45 45 45 45 45 45 45
mpegaudio 40 27 24 24 24 24 24 24 24
mtrt 20 9 7 7 7 7 8 8 8
soot-c 1748 983 913 913 913 913 | 938 913 938
sablecc 722 450 | 325 325 325 301 380 325 380
polyglot 1332 744 | 592 592 592 585 592 592 592
antlr 1086 843 | 843 843 843 843 | 843 843 843
bloat 2503 1079 | 962 962 961 | 962 962 962
chart 2782 2541 235 235 214 | 235 235

jython 646 | 347 | 347 347 346 | 347 347 347
pmd 2868 1224 | 1193 1193 1193 1163 | 1205 1205 1205
ps 321 304 (303 303 303 300 303 303 303

This table shows the number of potentially polymorphic functions in the call-graph of the
different analyses

In other words, these are all the call-sites with more than one outgoing edge

The authors notes that the benchmarks which are written in a more object-oriented style
can be better handled by the object-sensitive analysis compared to the insensitive analysis

The call-site context analysis can sometimes match the performance of the object-sensitive
analysis but never is more acurrate

Cast Safety

object-sensitive call site

Benchmark | insens. 1 2 3 1H 1 2 1H | ZCWL
compress 18 18 18 18 18 18 18 18 18
db 27 27 27 27 21 27 27 27 27
jack 146 | 145 145 145 104 | 146 145 146 146
javac 405 | 370 370 370 363 | 391 370 391

jess 130| 130 130 130 86| 130 130 130 130
mpegaudio 42 38 38 38 38 40 40 40 42
mtrt 31 27 27 27 27 27 27 27 29
soot-c 955 | 932 932 932 878 | 932 932 932
sableccj 375 369 369 369 331 370 370 370
polyglot 3539 | 3307 3306 3306 1017 | 3526 3443 3526 3318
antlr 295 275 275 275 237 | 276 275 276 276
bloat 1241 | 1207 1207 1160 | 1233 1207 1233 1234
chart 1097 | 1086 1085 934 | 1070 1070

jython 501 [499 499 471 | 499 499 499 499
pmd 1427 | 1376 1375 1375 1300 | 1393 1391 1393

ps 641 612 612 612 421 612 612 612 612

The authors created a cast-safety analysis which deems a runtime cast as safe if the
pointer being casted could only point to subtypes of the casted type, otherwise, the cast
may be unsafe

The table shows the number of potentially unsafe casts for each analysis
The cast-safety results are similar to the results of the previous analyses

The object-sensitive analysis is never less precise than the call-site sensitive analysis and is
often significantly more precise

Conclusion

» Comparison of various types of context-sensitivity on scalability and precision

20

Conclusion

» Comparison of various types of context-sensitivity on scalability and precision

» Showed effects of context sensitivity on many client analyses

20

Conclusion

» Comparison of various types of context-sensitivity on scalability and precision
» Showed effects of context sensitivity on many client analyses
» Analyzing Java? Wanna use some kind of sensitivity?

Conclusion

» Comparison of various types of context-sensitivity on scalability and precision
» Showed effects of context sensitivity on many client analyses
» Analyzing Java? Wanna use some kind of sensitivity?

Use an object-sensitive analysis

	Introduction
	Background
	Results
	Number of Contexts
	Equivalent Contexts

	Client Analyses
	Call-graph Construction
	Virtual Function Resolution
	Cast Safety

	Conclusion

