
Context-Sensitive Points-to Analysis: Is It Worth It?
CC 2006

Ond̆rej Lhoták Laurie Hendren
Presented by Markus Kusano

September 15, 2015

1



Motivation

I Does context-sensitivity improve precision?

I Which type of context-sensitivity is the best?

I How many contexts does an analysis produce?

2

• The main goal of this study was to investigate if context-sensitivity improves the precision
of inter-procedural analyses for object oriented programs

• As we’ve already seen, there are many different types of context-sensitivity

• This begs the question as to which type of context-sensitivity performs the best

• Finally, it would be interesting to know how many contexts an analysis produces

• The number of contexts may relate to both the precision and scalability of an analysis



Motivation

I Does context-sensitivity improve precision?

I Which type of context-sensitivity is the best?

I How many contexts does an analysis produce?

2

• The main goal of this study was to investigate if context-sensitivity improves the precision
of inter-procedural analyses for object oriented programs

• As we’ve already seen, there are many different types of context-sensitivity

• This begs the question as to which type of context-sensitivity performs the best

• Finally, it would be interesting to know how many contexts an analysis produces

• The number of contexts may relate to both the precision and scalability of an analysis



Motivation

I Does context-sensitivity improve precision?

I Which type of context-sensitivity is the best?

I How many contexts does an analysis produce?

2

• The main goal of this study was to investigate if context-sensitivity improves the precision
of inter-procedural analyses for object oriented programs

• As we’ve already seen, there are many different types of context-sensitivity

• This begs the question as to which type of context-sensitivity performs the best

• Finally, it would be interesting to know how many contexts an analysis produces

• The number of contexts may relate to both the precision and scalability of an analysis



Contributions

I Java points-to comparison

I Comparison of four analyses:

I Context insensitive
I Call-site sensitive
I Object sensitive
I Acyclic Call-graph Paths (ZCWL)

I Quantitative comparison

I Statistical summaries

I Qualitative comparison

I Code patterns showing variation

3

• The authors contributions are answers to the previous questions

• Their comparison focuses on the effectiveness of different context-sensitivities for analyzing
Java programs

• They implemented four different analyses within the same framework

• The first is a context insensitive analysis

• The second is a call-site sensitive algorithm using context strings

• The third is an object sensitive analysis

• And the fourth is a technique using the length of acyclic call-graph paths as the maxinum
call-site abstraction size

• Their analysis is both qualitative and quantitative

• The qualitative results come from statistical summarizations of the effectiveness of the
analysis

• They also show qualitative examples of types of code-patterns where the analyses show
variations in effectiveness



Contributions

I Java points-to comparison

I Comparison of four analyses:

I Context insensitive
I Call-site sensitive
I Object sensitive
I Acyclic Call-graph Paths (ZCWL)

I Quantitative comparison

I Statistical summaries

I Qualitative comparison

I Code patterns showing variation

3

• The authors contributions are answers to the previous questions

• Their comparison focuses on the effectiveness of different context-sensitivities for analyzing
Java programs

• They implemented four different analyses within the same framework

• The first is a context insensitive analysis

• The second is a call-site sensitive algorithm using context strings

• The third is an object sensitive analysis

• And the fourth is a technique using the length of acyclic call-graph paths as the maxinum
call-site abstraction size

• Their analysis is both qualitative and quantitative

• The qualitative results come from statistical summarizations of the effectiveness of the
analysis

• They also show qualitative examples of types of code-patterns where the analyses show
variations in effectiveness



Contributions

I Java points-to comparison

I Comparison of four analyses:
I Context insensitive

I Call-site sensitive
I Object sensitive
I Acyclic Call-graph Paths (ZCWL)

I Quantitative comparison

I Statistical summaries

I Qualitative comparison

I Code patterns showing variation

3

• The authors contributions are answers to the previous questions

• Their comparison focuses on the effectiveness of different context-sensitivities for analyzing
Java programs

• They implemented four different analyses within the same framework

• The first is a context insensitive analysis

• The second is a call-site sensitive algorithm using context strings

• The third is an object sensitive analysis

• And the fourth is a technique using the length of acyclic call-graph paths as the maxinum
call-site abstraction size

• Their analysis is both qualitative and quantitative

• The qualitative results come from statistical summarizations of the effectiveness of the
analysis

• They also show qualitative examples of types of code-patterns where the analyses show
variations in effectiveness



Contributions

I Java points-to comparison

I Comparison of four analyses:
I Context insensitive
I Call-site sensitive

I Object sensitive
I Acyclic Call-graph Paths (ZCWL)

I Quantitative comparison

I Statistical summaries

I Qualitative comparison

I Code patterns showing variation

3

• The authors contributions are answers to the previous questions

• Their comparison focuses on the effectiveness of different context-sensitivities for analyzing
Java programs

• They implemented four different analyses within the same framework

• The first is a context insensitive analysis

• The second is a call-site sensitive algorithm using context strings

• The third is an object sensitive analysis

• And the fourth is a technique using the length of acyclic call-graph paths as the maxinum
call-site abstraction size

• Their analysis is both qualitative and quantitative

• The qualitative results come from statistical summarizations of the effectiveness of the
analysis

• They also show qualitative examples of types of code-patterns where the analyses show
variations in effectiveness



Contributions

I Java points-to comparison

I Comparison of four analyses:
I Context insensitive
I Call-site sensitive
I Object sensitive

I Acyclic Call-graph Paths (ZCWL)

I Quantitative comparison

I Statistical summaries

I Qualitative comparison

I Code patterns showing variation

3

• The authors contributions are answers to the previous questions

• Their comparison focuses on the effectiveness of different context-sensitivities for analyzing
Java programs

• They implemented four different analyses within the same framework

• The first is a context insensitive analysis

• The second is a call-site sensitive algorithm using context strings

• The third is an object sensitive analysis

• And the fourth is a technique using the length of acyclic call-graph paths as the maxinum
call-site abstraction size

• Their analysis is both qualitative and quantitative

• The qualitative results come from statistical summarizations of the effectiveness of the
analysis

• They also show qualitative examples of types of code-patterns where the analyses show
variations in effectiveness



Contributions

I Java points-to comparison

I Comparison of four analyses:
I Context insensitive
I Call-site sensitive
I Object sensitive
I Acyclic Call-graph Paths (ZCWL)

I Quantitative comparison

I Statistical summaries

I Qualitative comparison

I Code patterns showing variation

3

• The authors contributions are answers to the previous questions

• Their comparison focuses on the effectiveness of different context-sensitivities for analyzing
Java programs

• They implemented four different analyses within the same framework

• The first is a context insensitive analysis

• The second is a call-site sensitive algorithm using context strings

• The third is an object sensitive analysis

• And the fourth is a technique using the length of acyclic call-graph paths as the maxinum
call-site abstraction size

• Their analysis is both qualitative and quantitative

• The qualitative results come from statistical summarizations of the effectiveness of the
analysis

• They also show qualitative examples of types of code-patterns where the analyses show
variations in effectiveness



Contributions

I Java points-to comparison

I Comparison of four analyses:
I Context insensitive
I Call-site sensitive
I Object sensitive
I Acyclic Call-graph Paths (ZCWL)

I Quantitative comparison

I Statistical summaries

I Qualitative comparison

I Code patterns showing variation

3

• The authors contributions are answers to the previous questions

• Their comparison focuses on the effectiveness of different context-sensitivities for analyzing
Java programs

• They implemented four different analyses within the same framework

• The first is a context insensitive analysis

• The second is a call-site sensitive algorithm using context strings

• The third is an object sensitive analysis

• And the fourth is a technique using the length of acyclic call-graph paths as the maxinum
call-site abstraction size

• Their analysis is both qualitative and quantitative

• The qualitative results come from statistical summarizations of the effectiveness of the
analysis

• They also show qualitative examples of types of code-patterns where the analyses show
variations in effectiveness



Contributions

I Java points-to comparison

I Comparison of four analyses:
I Context insensitive
I Call-site sensitive
I Object sensitive
I Acyclic Call-graph Paths (ZCWL)

I Quantitative comparison
I Statistical summaries

I Qualitative comparison

I Code patterns showing variation

3

• The authors contributions are answers to the previous questions

• Their comparison focuses on the effectiveness of different context-sensitivities for analyzing
Java programs

• They implemented four different analyses within the same framework

• The first is a context insensitive analysis

• The second is a call-site sensitive algorithm using context strings

• The third is an object sensitive analysis

• And the fourth is a technique using the length of acyclic call-graph paths as the maxinum
call-site abstraction size

• Their analysis is both qualitative and quantitative

• The qualitative results come from statistical summarizations of the effectiveness of the
analysis

• They also show qualitative examples of types of code-patterns where the analyses show
variations in effectiveness



Contributions

I Java points-to comparison

I Comparison of four analyses:
I Context insensitive
I Call-site sensitive
I Object sensitive
I Acyclic Call-graph Paths (ZCWL)

I Quantitative comparison
I Statistical summaries

I Qualitative comparison

I Code patterns showing variation

3

• The authors contributions are answers to the previous questions

• Their comparison focuses on the effectiveness of different context-sensitivities for analyzing
Java programs

• They implemented four different analyses within the same framework

• The first is a context insensitive analysis

• The second is a call-site sensitive algorithm using context strings

• The third is an object sensitive analysis

• And the fourth is a technique using the length of acyclic call-graph paths as the maxinum
call-site abstraction size

• Their analysis is both qualitative and quantitative

• The qualitative results come from statistical summarizations of the effectiveness of the
analysis

• They also show qualitative examples of types of code-patterns where the analyses show
variations in effectiveness



Contributions

I Java points-to comparison

I Comparison of four analyses:
I Context insensitive
I Call-site sensitive
I Object sensitive
I Acyclic Call-graph Paths (ZCWL)

I Quantitative comparison
I Statistical summaries

I Qualitative comparison
I Code patterns showing variation

3

• The authors contributions are answers to the previous questions

• Their comparison focuses on the effectiveness of different context-sensitivities for analyzing
Java programs

• They implemented four different analyses within the same framework

• The first is a context insensitive analysis

• The second is a call-site sensitive algorithm using context strings

• The third is an object sensitive analysis

• And the fourth is a technique using the length of acyclic call-graph paths as the maxinum
call-site abstraction size

• Their analysis is both qualitative and quantitative

• The qualitative results come from statistical summarizations of the effectiveness of the
analysis

• They also show qualitative examples of types of code-patterns where the analyses show
variations in effectiveness



Introduction

Background

Results
Number of Contexts
Equivalent Contexts

Client Analyses
Call-graph Construction
Virtual Function Resolution
Cast Safety

Conclusion

4

Next, I’ll provide a brief background on the different analyses the authors

studied



Background: Abstractions

I Calling context

I Pointer allocation (heap)

5

• Luckily, we’ve already looked at almost all the analyses the authors studied

• The authors investigate the effects of two different types of abstractions: calling context,
and pointer allocation or heap abstractions

• I’ll go over the high level details of both of these techniques



Background: Abstractions

I Calling context

I Pointer allocation (heap)

5

• Luckily, we’ve already looked at almost all the analyses the authors studied

• The authors investigate the effects of two different types of abstractions: calling context,
and pointer allocation or heap abstractions

• I’ll go over the high level details of both of these techniques



Background: Calling Context Abstraction

I Call-site context sensitivity

I Receiving-object context sensitivity

I Bounded by finite length strings

I Use fix bound k
I Longest non-cyclic path in the call-graph (ZCWL)

6

• We’ve seen presentations about different calling-context abstractions

• The first, call-site context sensitivity represents the calling context based on the location
where the call was invoked

• In receiving-object context sensitivity, the context is based on the object on which the
method is invoked

• In both of these cases, the context information is represented using bounded strings

• This is required to ensure termination because in general, the context information could be
infinite, for example, if the program uses recursion

• The authors look at two different ways to bound the length of the context information

• The first is to use a fix bound k to limit the length

• The second is to use a bound from the longest path in the call-graph where
strongly-connected components are merged.

• The authors refer to this second approach based on the creating authors names, ZCWL



Background: Calling Context Abstraction

I Call-site context sensitivity

I Receiving-object context sensitivity

I Bounded by finite length strings

I Use fix bound k
I Longest non-cyclic path in the call-graph (ZCWL)

6

• We’ve seen presentations about different calling-context abstractions

• The first, call-site context sensitivity represents the calling context based on the location
where the call was invoked

• In receiving-object context sensitivity, the context is based on the object on which the
method is invoked

• In both of these cases, the context information is represented using bounded strings

• This is required to ensure termination because in general, the context information could be
infinite, for example, if the program uses recursion

• The authors look at two different ways to bound the length of the context information

• The first is to use a fix bound k to limit the length

• The second is to use a bound from the longest path in the call-graph where
strongly-connected components are merged.

• The authors refer to this second approach based on the creating authors names, ZCWL



Background: Calling Context Abstraction

I Call-site context sensitivity

I Receiving-object context sensitivity

I Bounded by finite length strings

I Use fix bound k
I Longest non-cyclic path in the call-graph (ZCWL)

6

• We’ve seen presentations about different calling-context abstractions

• The first, call-site context sensitivity represents the calling context based on the location
where the call was invoked

• In receiving-object context sensitivity, the context is based on the object on which the
method is invoked

• In both of these cases, the context information is represented using bounded strings

• This is required to ensure termination because in general, the context information could be
infinite, for example, if the program uses recursion

• The authors look at two different ways to bound the length of the context information

• The first is to use a fix bound k to limit the length

• The second is to use a bound from the longest path in the call-graph where
strongly-connected components are merged.

• The authors refer to this second approach based on the creating authors names, ZCWL



Background: Calling Context Abstraction

I Call-site context sensitivity

I Receiving-object context sensitivity

I Bounded by finite length strings
I Use fix bound k

I Longest non-cyclic path in the call-graph (ZCWL)

6

• We’ve seen presentations about different calling-context abstractions

• The first, call-site context sensitivity represents the calling context based on the location
where the call was invoked

• In receiving-object context sensitivity, the context is based on the object on which the
method is invoked

• In both of these cases, the context information is represented using bounded strings

• This is required to ensure termination because in general, the context information could be
infinite, for example, if the program uses recursion

• The authors look at two different ways to bound the length of the context information

• The first is to use a fix bound k to limit the length

• The second is to use a bound from the longest path in the call-graph where
strongly-connected components are merged.

• The authors refer to this second approach based on the creating authors names, ZCWL



Background: Calling Context Abstraction

I Call-site context sensitivity

I Receiving-object context sensitivity

I Bounded by finite length strings
I Use fix bound k
I Longest non-cyclic path in the call-graph (ZCWL)

6

• We’ve seen presentations about different calling-context abstractions

• The first, call-site context sensitivity represents the calling context based on the location
where the call was invoked

• In receiving-object context sensitivity, the context is based on the object on which the
method is invoked

• In both of these cases, the context information is represented using bounded strings

• This is required to ensure termination because in general, the context information could be
infinite, for example, if the program uses recursion

• The authors look at two different ways to bound the length of the context information

• The first is to use a fix bound k to limit the length

• The second is to use a bound from the longest path in the call-graph where
strongly-connected components are merged.

• The authors refer to this second approach based on the creating authors names, ZCWL



Background: Calling Context Abstraction

1 ...

2 A obj = new A();

3 ...

I Context-insensitive: o2

I Calling-context c1
I Calling-context Heap Abstraction: (c1, o2)

7

• An orthogonal decision is how to abstractly the object returned by an allocation operation

• In many of the previous analyses, we considered each allocation site to return one single
abstract object

• Essentially, this meant we would create a point-to set for each object allocated on each line

• This approach considers the heap in a context-insensitive way

• Looking at this example we can see the creation of an object on line two. We can represent
this allocation as an object o2

• An alternative approach is to use either the calling-context or receiving-object context for
pointer allocations

• For example, suppose this allocation occurs in calling context c1.

• We can instead represent the allocation as the pair (c1, o2)

• In this way, we treat each allocation in every context as distinct

• A similar abstraction can be done using the receiving object



Background: Calling Context Abstraction

1 ...

2 A obj = new A();

3 ...

I Context-insensitive: o2
I Calling-context c1

I Calling-context Heap Abstraction: (c1, o2)

7

• An orthogonal decision is how to abstractly the object returned by an allocation operation

• In many of the previous analyses, we considered each allocation site to return one single
abstract object

• Essentially, this meant we would create a point-to set for each object allocated on each line

• This approach considers the heap in a context-insensitive way

• Looking at this example we can see the creation of an object on line two. We can represent
this allocation as an object o2

• An alternative approach is to use either the calling-context or receiving-object context for
pointer allocations

• For example, suppose this allocation occurs in calling context c1.

• We can instead represent the allocation as the pair (c1, o2)

• In this way, we treat each allocation in every context as distinct

• A similar abstraction can be done using the receiving object



Background: Calling Context Abstraction

1 ...

2 A obj = new A();

3 ...

I Context-insensitive: o2
I Calling-context c1
I Calling-context Heap Abstraction: (c1, o2)

7

• An orthogonal decision is how to abstractly the object returned by an allocation operation

• In many of the previous analyses, we considered each allocation site to return one single
abstract object

• Essentially, this meant we would create a point-to set for each object allocated on each line

• This approach considers the heap in a context-insensitive way

• Looking at this example we can see the creation of an object on line two. We can represent
this allocation as an object o2

• An alternative approach is to use either the calling-context or receiving-object context for
pointer allocations

• For example, suppose this allocation occurs in calling context c1.

• We can instead represent the allocation as the pair (c1, o2)

• In this way, we treat each allocation in every context as distinct

• A similar abstraction can be done using the receiving object



Benchmarks

8

• The authors performed their analysis on a set of programs from a variety of different
benchmark suites

• Their analysis included all application and library code except for the Java standard library

• On the far left we can see the total number of classes and methods

• The authors also then executed the benchmarks and counted the number of methods
executed

• The left column labeled “app” shows the number of methods executed excluding the Java
standard library

• The far right column shows the number of methods including the standard library



Introduction

Background

Results
Number of Contexts
Equivalent Contexts

Client Analyses
Call-graph Construction
Virtual Function Resolution
Cast Safety

Conclusion

9

Next, we’ll start looking at the results starting with the number of

contexts produced by the different abstractions



Counting Contexts

I Count method–context pairs

I Object-abstraction o and methods m1 and m2

I Two contexts: (m1, o), and (m2, o)

10

• To count the number of contexts, the authors consider pairs of methods and calling
contexts as a single “context”

• For example, consider the object-sensitive abstraction

• If we have some object abstraction o and two of its methods m1 and m2, the authors count
the invocations of m1 and m2 with the same object abstraction as a single context



Counting Contexts

I Count method–context pairs

I Object-abstraction o and methods m1 and m2

I Two contexts: (m1, o), and (m2, o)

10

• To count the number of contexts, the authors consider pairs of methods and calling
contexts as a single “context”

• For example, consider the object-sensitive abstraction

• If we have some object abstraction o and two of its methods m1 and m2, the authors count
the invocations of m1 and m2 with the same object abstraction as a single context



Counting Contexts

I Count method–context pairs

I Object-abstraction o and methods m1 and m2

I Two contexts: (m1, o), and (m2, o)

10

• To count the number of contexts, the authors consider pairs of methods and calling
contexts as a single “context”

• For example, consider the object-sensitive abstraction

• If we have some object abstraction o and two of its methods m1 and m2, the authors count
the invocations of m1 and m2 with the same object abstraction as a single context



Context Sizes

I Bounded size of context information (1,2,3)

I ZCWL bound

I 1H: size one bound for calling-context and heap abstraction

11

• As we’ll see in a second, the authors used varying bound sizes for each analysis

• The bound size is simply represented as an integer

• They also used the ZCWL bound computed using the call-graph

• The call-graph used was created from the context-insensitive analysis

• Finally, when the authors say “1H” they use a size one calling-context and a size-one heap
abstraction



Number of Contexts

12

• This table shows the results comparing the number of contexts for the different abstractions

• On the far right, “insen” shows the number of “contexts” for the context-insensitive
analysis

• Since the context-insensitive analysis, conceptually, has a single context for each method
invocation, this column is simply the number of method invocations

• The values in the columns to the right are all showing the number of contexts as a multiple
of insens

• For example, the 1 object sensitive analysis has 13.7 times the number of contexts as the
insen analysis

• Columns which are blank indicate the system ran out of memory

• The results show that there is a very large increase in memory as the amount of context
information increases

• This means that explicitly representing the context information for large programs will not
scale



Introduction

Background

Results
Number of Contexts
Equivalent Contexts

Client Analyses
Call-graph Construction
Virtual Function Resolution
Cast Safety

Conclusion

13

Next, we’ll look at results investigating the number of equivalent contexts



Equivalent Contexts

I Method–context pairs: (m1, c1), (m2, c2)

I Two method–context pairs are equivalent if:

I m1 = m2

I For all pointer variables p in m1, the points-to set of p is the same in c1 and
c2

I Equivalent pairs means context information does not provide extra information

14

• The authors further examined all the method–context pairs to investigate which of the
pairs was equivalent

• They define equivalence of two pairs with methods m1 and m2 and context c1 and c2 to
require that the two methods are the same and for all pointer variables in the method, the
points-to set of the point is the same in both contexts

• In essence, this notion of equivalence means that if two pairs are equivalent, we would have
been better off only keeping one of the contexts to save memory



Equivalent Contexts

I Method–context pairs: (m1, c1), (m2, c2)

I Two method–context pairs are equivalent if:

I m1 = m2

I For all pointer variables p in m1, the points-to set of p is the same in c1 and
c2

I Equivalent pairs means context information does not provide extra information

14

• The authors further examined all the method–context pairs to investigate which of the
pairs was equivalent

• They define equivalence of two pairs with methods m1 and m2 and context c1 and c2 to
require that the two methods are the same and for all pointer variables in the method, the
points-to set of the point is the same in both contexts

• In essence, this notion of equivalence means that if two pairs are equivalent, we would have
been better off only keeping one of the contexts to save memory



Equivalent Contexts

I Method–context pairs: (m1, c1), (m2, c2)

I Two method–context pairs are equivalent if:
I m1 = m2

I For all pointer variables p in m1, the points-to set of p is the same in c1 and
c2

I Equivalent pairs means context information does not provide extra information

14

• The authors further examined all the method–context pairs to investigate which of the
pairs was equivalent

• They define equivalence of two pairs with methods m1 and m2 and context c1 and c2 to
require that the two methods are the same and for all pointer variables in the method, the
points-to set of the point is the same in both contexts

• In essence, this notion of equivalence means that if two pairs are equivalent, we would have
been better off only keeping one of the contexts to save memory



Equivalent Contexts

I Method–context pairs: (m1, c1), (m2, c2)

I Two method–context pairs are equivalent if:
I m1 = m2

I For all pointer variables p in m1, the points-to set of p is the same in c1 and
c2

I Equivalent pairs means context information does not provide extra information

14

• The authors further examined all the method–context pairs to investigate which of the
pairs was equivalent

• They define equivalence of two pairs with methods m1 and m2 and context c1 and c2 to
require that the two methods are the same and for all pointer variables in the method, the
points-to set of the point is the same in both contexts

• In essence, this notion of equivalence means that if two pairs are equivalent, we would have
been better off only keeping one of the contexts to save memory



Equivalent Contexts

I Method–context pairs: (m1, c1), (m2, c2)

I Two method–context pairs are equivalent if:
I m1 = m2

I For all pointer variables p in m1, the points-to set of p is the same in c1 and
c2

I Equivalent pairs means context information does not provide extra information

14

• The authors further examined all the method–context pairs to investigate which of the
pairs was equivalent

• They define equivalence of two pairs with methods m1 and m2 and context c1 and c2 to
require that the two methods are the same and for all pointer variables in the method, the
points-to set of the point is the same in both contexts

• In essence, this notion of equivalence means that if two pairs are equivalent, we would have
been better off only keeping one of the contexts to save memory



Equivalent Contexts

15

• This table shows the number of equivalence classes for all the techniques examined

• Again, the number of equivalence classes shows how beneficial the extra context
information was: less equivalence classes means the context-information did not provide
extra precision

• Again, the columns of all the context-sensitive analyses are multiples of the insens column.

• Here, we can see the object sensitive analysis creates more equivalance classes, or, that it is
able to partition the results into more non-equivalant groups

• This means the object-sensitive abstraction may be better at providing extra precision
using the context information compared to the call-site abstraction

• Also, we can see the number of equivalence classes does not increase too much as the size
of the context increases

• This means that the analysis results do not improve too much with larger contexts

• Interestingly, we see that ZCWL preforms rather poorly since the effective context-size
bound used by the analysis is always much larger than 2

• However, the ZCWL method merges call-graph nodes in strongly-connected components
and treats them in a context-insensitive manner

• The authors found that a large porition of the call-graph of many of the bench marks is a
strongly-connected component resulting in the ZCWL method to degrade to a context
insensitive one for a large number of methods.



Introduction

Background

Results
Number of Contexts
Equivalent Contexts

Client Analyses
Call-graph Construction
Virtual Function Resolution
Cast Safety

Conclusion

16

Next, we’ll look at the applicability of the different context-sensitivities in

performing client analyses



Reachable Methods

17

• This table shows the number of reachable methods created by the object and call-site
sensitive analyses

• For each benchmark, the most precise and least-expensive analysis has been highlighted in
bold

• Overall, we can see the points-to based approach can significantly improve over CHA

• The 1-object-sensitive analysis can slightly improve over the insensitive analysis

• The call-site sensitive analysis can approach the performance of the object-sensitive
analysis but often requires larger context information



Potentially Polymorphic Functions

18

• This table shows the number of potentially polymorphic functions in the call-graph of the
different analyses

• In other words, these are all the call-sites with more than one outgoing edge

• The authors notes that the benchmarks which are written in a more object-oriented style
can be better handled by the object-sensitive analysis compared to the insensitive analysis

• The call-site context analysis can sometimes match the performance of the object-sensitive
analysis but never is more acurrate



Cast Safety

19

• The authors created a cast-safety analysis which deems a runtime cast as safe if the
pointer being casted could only point to subtypes of the casted type, otherwise, the cast
may be unsafe

• The table shows the number of potentially unsafe casts for each analysis

• The cast-safety results are similar to the results of the previous analyses

• The object-sensitive analysis is never less precise than the call-site sensitive analysis and is
often significantly more precise



Conclusion

I Comparison of various types of context-sensitivity on scalability and precision

I Showed effects of context sensitivity on many client analyses

I Analyzing Java? Wanna use some kind of sensitivity?

I Use an object-sensitive analysis

20



Conclusion

I Comparison of various types of context-sensitivity on scalability and precision

I Showed effects of context sensitivity on many client analyses

I Analyzing Java? Wanna use some kind of sensitivity?

I Use an object-sensitive analysis

20



Conclusion

I Comparison of various types of context-sensitivity on scalability and precision

I Showed effects of context sensitivity on many client analyses

I Analyzing Java? Wanna use some kind of sensitivity?

I Use an object-sensitive analysis

20



Conclusion

I Comparison of various types of context-sensitivity on scalability and precision

I Showed effects of context sensitivity on many client analyses

I Analyzing Java? Wanna use some kind of sensitivity?
I Use an object-sensitive analysis

20


	Introduction
	Background
	Results
	Number of Contexts
	Equivalent Contexts

	Client Analyses
	Call-graph Construction
	Virtual Function Resolution
	Cast Safety

	Conclusion

