
Parameterized Object Sensitivity
for Points-to Analysis for Java

Authors: Ana Milanova, Atanas
Rountev, Barbara G. Ryder

Presenter: Zheng Song

Outlines

• Introduction

• Existing Method and its limitation

• Object Sensitive analysis

• Parameterized Object Sensitivity

• Implementation

• Evaluation

• Questions

Outlines

• Introduction

• Existing Method and its limitation

• Object Sensitive analysis

• Parameterized Object Sensitivity

• Implementation

• Evaluation

• Questions

Introduction

• One sentence to conclude this paper: analyze
a method separately for each of the objects
on which this method is invoked

• For: Points-to Analysis: Method in Java to
determine the set of objects pointed to by a
reference variable or a reference object field

Sample points-to graph

Outlines

• Introduction

• Existing Method and its limitation

• Object Sensitive analysis

• Parameterized Object Sensitivity

• Implementation

• Evaluation

• Questions

Existing Methods

• Andersen’s algorithm: flow insensitive &
context insensitive

• Semantics (why called semantics?)

– R – set of all reference variables

– O – set of all objects created at object allocation
sites

– F – contains all instance fields in program class

– Edge (r,oi) Є R x O

– (<oi,f>, oj) Є (O x F) x O

– Transfer functions

Example

R

O

Edge:R xO

Set of Instance fields: F

Edge: (O x F) x O

All statements are divided into :

Go through each statement and

conduct the graph following:

Problem:

1. what’s the difference between OOPSLA’01?

Existing Methods

• Flow insensitive V.S. Flow sensitive:

Existing Methods

• Context insensitive V.S. Context sensitive:

Its limitation in Object Oriented
Programing

• Encapsulation

• Inheritance

• Collection (Containers)…

Lets try to analyze these features using flow
insensitive and context insensitive analysis

Encapsulation

x1 O1 O2 x2

y1 O3

y2 O4

f

x

this

f

f

f

Inheritance

y O1 O2 z

b O3

B.xb

A.xa

this

f

f

f

O4 c

C.xc

f

container

C1c2C1o2

C1this

C1
data_
tmp

C1o1

C1o3 C1o4

data data

o3'

data data

C1c1

Imprecision

• Encapsulation

• Inheritance

• Container

– are all strong concepts of OOP

– But not captured properly with old techniques

– Solution is Object sensitivity

Outlines

• Introduction

• Existing Method and its limitation

• Object Sensitive analysis

• Parameterized Object Sensitivity

• Implementation

• Evaluation

• Questions

Object Sensitivity

• With object sensitivity, each instance method
and each constructor is analyzed separately
for each object on which this
method/constructor may be invoked.

• How? Revised semantics
– O` - set of all object names

– R` - set of replicas of reference variable

– Relation α(C,m)=> α(o,m): C, or D which is a superclass of C

– Set of new transfer functions

Object Sensitivity

Object Names

Oij…pq:the sequence of allocation sites (si, sj , . . . , sp, sq).

A particular name oij···pq represents all run-time objects that were created by sq
when the enclosing instance method or constructor was invoked on an object
represented by name oij...p which was created at allocation site sp (recursive)

S1: object O1

S2: object O2

S3: object O3

O1=> O21 & O31

Object Sensitivity

Context Sensitivity
With more objects, next step we make more references pointing to these objects:

[\epsilon is to deal with static calls]

If r is a local variable or a formal parameter of an instance method or a
constructor m, the pair (r, o) is mapped to a “fresh” variable ro for every
context o ∈ O’ for which α(o, m) holds.

Fig. 4

, two copies of A.this corresponding to contexts o3 and o4

Fig. 5
therefore there are context copies of

put.this, put.data tmp, and put.e corresponding to contexts o2 and o3

Q: how to formalize each element in R’ ?

Breaking News…

• Introduction

• Existing Method and its limitation

• Object Sensitive analysis

• Parameterized Object Sensitivity

• Implementation

• Evaluation

• Questions

Parameterized Object Sensitivity

Notes:

1. The parameterized framework only apply to the set of objects (O’),

by affecting (O’), it further affects R’ and the transfer functions;

2. If k=1, it is actually Andersen’s algorithm

3. K can be different to different statements

Q: why we need k?

Object Sensitivity

• Transfer Functions

Context sensitivity included

• B.thiso3,B.xbo3,

A.xao3

C.thiso4,C.xco4,

A.xao4

y O1 O2 z

b O3 O4 c

B.xb

A.xa

this

C.xc

f

f

f

f

Example3.1.4

y O1 O2 z

b O3 O4 c

B.xb

A.xa

this

C.xc

f

f

f

f

Advantages

• Models OOP features

• Distinguishes between different receiver
objects

• Static methods and variables can be handled
with insensitivity

• Can be parameterized

Outlines

• Introduction

• Existing Method and its limitation

• Object Sensitive analysis

• Parameterized Object Sensitivity

• Implementation

• Evaluation

• Questions

Side-effect Analysis (MOD)

Instance field
assignments

Virtual
method calls

Static method
calls

Typo: should be c

Outlines

• Introduction

• Existing Method and its limitation

• Object Sensitive analysis

• Parameterized Object Sensitivity

• Implementation

• Evaluation

• Questions

Implementations

• Parameterized object-sensitive points-to
analysis (context depth = 1):

– ObjSens1: keeps context-sensitive information for
implicit parameters this and formal parameters
of instance methods and constructors.

– ObjSens2: the same as ObjSens1, but it also keeps
track of return variables.

Implementations

• Context-sensitive analysis based on the call
string approach to context sensitivity, for a call
string k = 1 (CallSite).

• Distinguishes context per call site.

• To allow for comparison, the context
replication is performed for this, formal
parameters and return variables in instance
methods and constructors.

Characteristics of Programs

Analysis Cost

MOD Analysis Precision

Conclusions

• Presented a framework for parameterized
object-sensitive points-to analysis, and side-
effect and def-use analyses based on it.

• Object-sensitive analysis achieves significantly
better precision than context-insensitive
analysis, while remaining efficient and
practical.

Acknowledgement

• Besides the original paper and its journal
version, some materials are derived from

– UPENN CIS570 Lecture Notes

– UMD CMSC737(Fundamentals of Software
Testing), Student Presentation by Anand Bahety&
Dan Bucatanschi

