
“Type Analysis for

JavaScript”
Presenter: Austin Cory Bart

Location: Knowledge Works II, Room 2225

Date: 9/22/2015

Original Authors: S. H. Jensen, A. Moeller, & P Thiemann

Original Venue: SAS 2009

Outline

1. What is JavaScript?

2. JS Analysis

3. Abstract Intepretation

4. Recency Abstraction

5. Results

6. Conclusion

What is this “JavaScript”?

DM; TOBE

What is JavaScript?

 For manipulating the DOM

What is JavaScript

• C-style syntax

What is JavaScript?

 Absurd typing: (Almost) Nothing ever fails

What is JavaScript

• Prototype-based language

Object-level function overriding

Runtime prototype changing

What is JavaScript

• Dynamic

a = new A;

a.new_property = 5

a[‘what a crazy language’] = a.new_property

What is JavaScript

 Multiple levels of non-existence:

 0, false, “”

 null

 undefined

Type Analysis

Type Errors

 Calling a property that’s null

 Accessing the field of a null/undefined

 Reading an absent value

Analysis characteristics

 Handwritten, <1000 LOC

 Sound

 Automatic

 Full language (including eval)

Abstract Intepretation

 Dataflow through the Monotone Framework

 Lattice + Set of Monotone Functions (L -> L)

Control
Flow Graph

Dataflow
Lattice

Transfer
Functions

(1) JS Control Flow Graph

 declare-variable[variable]

 read-variable[variable, temp]

 write-variable[temp, variable]

 constant[constant, variable]

 read-property[variable, field_name, temp]

 write-property[variable, field_name, temp]

 delete-property[variable, field_name, temp]

 if[variable]

 entry[function, variable_1, ..., variable_n]/exit/exit-exc

 call[function, this, variable_1, ..., variable_n], construct, after_call

 return[variable]

 throw[variable] , catch[variable]

 <op>[variable_left, variable_right], binary and ternary operators

(2) DataFlow Lattice (A)

Examples:

L is the set of object labels

“These definitions are the culmination of

tedious twiddling and experimentation”

(2) Dataflow Lattice (B)

All property labels

Handles closures

See part A

Modified since entry

into function

(2) Dataflow Lattice (C)

Object Label

Temporaries Stack Frames All property labels in stack

Object Labels for handling

intra-procedural analysis

(definitely, maybe summarized)

ScopeChain

var a = 1;

function x(c) {

var b = a * 2 + c;

y();

}

x(4);

function y() {

var a = b * 2;

b = a-2;

}

Scope Chain

Execution Context

Scope Chain

0 (x)

1 (y)

2 (global) Activation Object

Activation Object

document [object]

window [object]

a 1

x [function]

b 6

y [function]

Activation Object

a 12

c 4

ScopeChain

var a = 1;

function x(c) {

var b = a * 2 + c;

y();

}

x(4);

function y() {

var a = b * 2;

b = a-2;

}

Scope Chain

Execution Context

Scope Chain

0 (x)

1 (y)

2 (global) Activation Object

Activation Object

document [object]

window [object]

a 1

x [function]

b 10

y [function]

Activation Object

a 12

c 4

(2) Dataflow Lattice (D)

Version Labels

(context sensitivity
based on this)

Nodes

Abstract State

(3) Transfer Functions

 read-property[variable, field_name, temp]

1. Force variable to be an object – if it is many objects, then they all have to

be handled.

2. Force field_name to be a string

3. Travel the prototype chain to find the relevant properties and join them

4. Strong update to temp

“Strong” updates?

 Sometimes we are assigning to multiple possible abstract/concrete objects

(as distinguished by their allocation site)

 write-property[variable, field_name, temp] suffers from this in

particular

Recency Abstraction

 Each allocation site L gets two object labels

 L@ - singleton (most recent)

 L* - summary (the rest)

 Good for handling an allocation site in a loop or a call (flow-sensitive only

for the latter)

 Some extra complexity required to track this!

Intra-procedural

call[function, this, variable_1, ..., variable_n], after_call

1. Extract all function objects

2. Add call edges to the entry nodes

3. Add return edges to their exit nodes back in

4. Add exception edges

Boundedness

1. ScopeChain is bounded by the lexical depth

2. |abstract states| is based on context-sensitivity criteria

3. Object map is not a problem because of default_index/default_other.

 Result: The worst case may be bad, but who programs like that?

Testing

 150 small programs (5-50 lines)

 Detects all errors, provides type information

Evaluation

 Google V8 Benchmark test suite

 “we measure precision by counting the number of operations where the

analysis does not produce a warning (for different categories), i.e. is

capable of proving that the error cannot occur at that point”

In most cases, the false positives appear to be

caused by the lack of path sensitivity.

Not listed – “cryptobench.js”

Causes OutOfMemory!

Conclusion

 Sound, detailed tool for type analysis in JS

 Monotone framework with lattice and transfer functions

 Recency Abstraction helps for some kinds of analyses

Future Work

 “We envision an IDE for JavaScript programming with features known from

strongly typed languages, such as highlighting of type-related errors and

support for precise content assists and safe refactorings”

 Modeling DOM

