Al A S EALIL AINALT SIS
FLALEOIREY L UIR AV AN RIE L

Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gibbons, John Sarracino,
BenWiedermann, Ben Hardekopf

PAPER BACKGROUND

Symposium on Foundations of Software Engineering (FSE) ’14.
22% Acceptance rate (61/273).

Significant supplemental material.
Includes detailed descriptions and their implementation.

Co-authored by Dr. Ryder’s ex post-doc.

SALBAL KEIROIUINDD

What is it?
Static analysis platform for ECMA 3 JavaScript.
Implemented using Scala 2.10.
What are its goals?
Secure, correct, maintainable, fast JS code.
Security auditing, error-checking, debugging, optimization, program understanding, etc.
Improve JS static analysis relative to static analysis for other languages like C and Java.
Difficult due to JS’s dynamic nature.
How is it different?
Formally specified abstract and concrete semantics designed for abstract interpretation.
Concrete semantics tested against commercial |S engine, and abstract semantics tested against concrete for soundness.

Analysis sensitivity (path, context, heap) is user configurable.

|SAI DESIGN OVERVIEW

Intermediate representation of JS programs (not)S)
Abstract semantics for not/S

Novel abstract domains for JS analysis

WHAT IS NOT]S?

Intermediate JS program representation using a formally-specified translation from
JS.

Possesses formal concrete semantics.

Based on abstract syntax tree, not a control flow graph.
Higher order functions, implicit exceptions, implicit conversation types.
Imprecision and unsoundness.
Uses small step abstract machine operational semantics to model control-flow.

Aims to make abstract interpretation simple, precise, and efficient.

n € Num b€ Bool str € String x € Variable £ € Label

s€ Stmt::=35; | ifes; so | whilees | z:=e | ej.ex :=e3
z:=ei1(ez2,e3) | z:=toobje | z:=del ej.e2
z :=newfun mn | = :=new ej(ez) | throw e

try-catch-fin sy zsgs3 | £s | jumpfe | forzes
e€cExp:=mn | b | str | undef | null |z|m|e1 Pex| Ce

d € Decl ::= decl Z; = ¢; in s
m € Meth ::= (self,args) = d | (self,args) = s

@EBMOp:=+ | — | X | - | % | <<|>|>|<
(<1 & |/ | Y |and |or |+ |<]=
|~ |=| . | instanceof | in

® € UnOp ::=— |~ | = | typeof | isprim | tobool

| tostr | tonum

N D ABSERAL E STINTACK

WHY USE NOTIS?

“JavaScript’s many idiosyncrasies and quirky behaviors motivate
the use of formal specifications for both the concrete JavaScript
semantics and our abstract analysis semantics.”

Captures JavaScript behaviors.
Allows them to test against actual JavaScript implementations.

Allows for configurable sensitivity.

SEMANTICS FOR NOT]S

Concrete semantics model |S programs by starting with an initial program
state (data structure) and applying transformation rules (functions) to
continually generate the next state until the program terminates.

Abstract semantics provide a static analysis which over-approximates the
concrete semantics.

Differences
Concrete State/ Transformation Rules: Singleton/Deterministic

Abstract State/Transformation Rules: Set/Nondeterministic

1: put the initial abstract state o on the worklist
2: initialize map partition : Trace — State* to empty
3: repeat

4: remove an abstract state ¢ from the worklist
5: for all abstract states ¢’ in next_states($) do
6: if partition does not contain trace(<’) then
7 partition(trace({’)) = ¢’
8: put ¢ on worklist
9: else
10: $otd = partition(trace($’))
11: Snew = Sota U 6’
12: if fnew 75 fold then
13: partition(trace(<’)) = Snew
14: put $pew on worklist
15: end if
16: end if
17: end for

18: until worklist is empty

DAl ANAL SIS AL CRE I

LI ANN S FOIR E R ABSTRAL |
SERIAN LD

Abstract state consists of:
Term - notJS statement or abstract value after evaluating a statement.
Environment - Maps variables to sets of addresses.
Store - Maps address to abstract values, abstract objects, or sets of continuations.
Continuation Stack - Represents the computations still to be performed.
Trace - Allows for configureable context sensitivity.
Abstract values are:
Exception/jump values (handles non-local control flow)
Base values (represents JavaScript values)
Tuple of abstract numbers, booleans strings addresses, null, and undefined.
Each component is a lattice, which represents a type the value cannot contain, and represents an analysis.
These lattices result from a reduced product of the individual analyses.

All the domains in conjunction define a set of simultaneous analyses which include control flow, pointer, type inference and extended boolean, number and
string constant propagation.

DOMAINS FOR THE ABSTRACT
SEMANTICS (CONT)

By default, |SAl’s abstract string (String#) domain is similar to TAJS’s,
but is configureable along with the abstract number domain.

Their abstract object domain models objects as tuples containing:
A map from property names to values.
A list of definitely present properties.

(Novel) A map containing class-specific values as well as a record
of which specific class this abstract object belongs to.

i € Num® str € String® a € Address* & € UnOp* & € BinOp®

¢ € State® = Term® x Env* x Store’ x Kont*
t € Term® = Decl + Stmt + Value®
p € Env® = Variable — P(Address*)
& € Store® = Address® — (BValue* + Object® + P(Kont®))

bv € BValue* = Num® x P(Bool) x String® x P(Address®)x
P({null}) x P({undef})
6 € Object” = (String® — BValue®) x P(String) x
(String — (BValue® + Class + P(Closure*)))
¢ € Class = {function, array, string, boolean, number, date,
error, regexp, arguments, object, . . .}
clo € Closure® = Env® x Meth
v € EValue® ::= exc bv
jv € JValue® ::= jmp £ by
€ Value® = BValue* + EValue® + JValue®
&k € Kont* - haltK | s'&;T(‘s’.-k | whileK e s & | IbIK ¢ &

| forK str;zsik | retK z & ctor | retK z 5 & call

- —

| tryK zssi | catchK s | finK i | addrK

=1

ABSTRALT SERIAN FIC 1 ICINTAIINS

ABS ERAC T T RANSITION RULES

(s::83,p,0,K)
(31\),[5,6,5’&;(8::8iR)
(bv, p, &, seqK €R)

(if € 81 82,p,0,K)

SV

(if € 81 82, pa &a k)

(8, ﬁa &’ SGQK gi I.C)

(s, p,0,5eqK 5; &)

(bv, p, 6,)

(s1,p,0,k) if true € 7;([e])
(s2,p,0,k) if false € w;([e])

N —

Describe how to get from a
current state to a successor
state.

Nondeterministic.

1540 CONFIGEIRABH LY

Path-, context-, and heap- sensitivities configurable.
Implemented six main parameterized context sensitivities:

Context Insensitive

Stack CFA

Acyclic CFA

Obiject Sensitive
Signature CFA (Novel)

Mixed CFA (Novel)

EVALUATION SEUP

Independent AVVS instances.
I5GB memory.
8 ECUs (1.0-1.2 GHz per ECU).
Tested k.h-stack, h-acyclic, k.-h-obj, k.h-sig, and k.h-mixed.
k = k-limiting context depth.
h = heap sensitivity.
Benchmark Suites (28 total):
standard - Largest and most complex programs from SunSpider and V8.
addon - Firefox browser addons from Mozilla repository.
generated - Emscripten LLVM test suite generated programs translated to JavaScript
opensrc - Open source JavaScript framework programs

Measured execution time and precision.

Performance measured by running each analysis | | times, discarding the first, and taking the median of the remaining |0.

Measure precision by the number of static program locations that might throw exceptions based on type tracking.

M10stack M54stack M4 acycic M10obj M540b M10sig MS54sig M1O0mixed MS54mixed Mfs
10,000 1,000,000
10,000

NINTRE] i

o o ol f‘”‘:w"“‘}"' e @ I N

Execution Time (ms)

Execution Time (ms)

1,000

o
(a) addon benchmarks (b) generated benchmarks
1,000,000 1,000,000
:E: 100,000 E 100,000
£ -
g 10,000 § o
i 1,000 [
1,000
0 il

o;,, :Ww‘ywv"yww Mw’”*"’»"fﬁoﬁw"’ﬂ

(c) opensrc benchmarks (d) standard benchmarks

PERPORPIAINCE BAR GRAFE

FERPLIRP AN PRSI [

<n

- = Higher sensitivities can be more
HA performant than their lower

o . counterparts (5.4-stack on

e ling_dictionary).
Emﬁ“i_-_. Common knowledge was that k/h
q_sckon ‘ - —- -
s - > 2 are unreasonably expensive.
S m Trend is not universal.

ey - —

s

qj ?f fs" 3? ,f :f“ .;f‘R fe e" ¥

FRECIHICIIN RESUIL 5

. Callstring-based sensitivities (k.h-
stack and h-acyclic) were more
precise than object sensitivities.

3
7 IR
7 IbE

#

F333333
R

n
EN

7
H K
B
¢

Most precise and efficient were
stack-based k-CFA.

Partly due to the 1/4 of the
benchmark suite being machine-

e oM 2% 2% 0% ouNENES
o SR SES o : -
— Increased sensitivity does not

L A always increase precision.

~

L e — .

120

IS

§ 100 1.0-0b)
@

g

2 80

2 1.0-stack 5.4-0bj
L] ® o

S 5.4-stack

S 60 e

40

0 100 200 300 400

Time Taken (secs)

PRECISICIN VS PERICIRPIAINC |

SALV S TALS

TAJS (Type Analysis for JavaScript) - Only static analysis for JavaScript which can soundly analyze the whole language.
Features that differentiate |SAI from TAJS:

Configurable sensitivity.

Formalized abstract semantics.

Novel abstract domains.

No (discovered) bugs which decrease soundness.

Can analyze more benchmark suites.
Advantages of TAJS:

More precise implementation of core JavaScript APIs.

Possesses performance and precision optimizations (heap abstraction and lazy propagation).
Comparison

JSAI requires 0.3x to 1.8x more time to run.

JSAIl reports 9 fewer to 104 more type errors.

JSAI reports at most 20 more type errors not including the bug.

CONCLUSIONS

Main contribution: |SAl, a configurable, sound and efficient
abstract interpreter for JS.

Uses concrete and abstract semantics to model program
execution and produce static analyses.

More precise context sensitive analyses are sometimes the most
performant.

Only similar platform, TAJS, is unsound and difficult to accurately
compare the two.

