
JSAI: A STATIC ANALYSIS 
PLATFORM FOR JAVASCRIPT
Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gibbons, John Sarracino, 
BenWiedermann, Ben Hardekopf



PAPER BACKGROUND

Symposium on Foundations of Software Engineering (FSE) ’14.

22% Acceptance rate (61/273).

Significant supplemental material.

Includes detailed descriptions and their implementation.

Co-authored by Dr. Ryder’s ex post-doc.



JSAI BACKGROUND

What is it?

Static analysis platform for ECMA 3 JavaScript.

Implemented using Scala 2.10.

What are its goals?

Secure, correct, maintainable, fast JS code.

Security auditing, error-checking, debugging, optimization, program understanding, etc.

Improve JS static analysis relative to static analysis for other languages like C and Java.

Difficult due to JS’s dynamic nature.

How is it different?

Formally specified abstract and concrete semantics designed for abstract interpretation.

Concrete semantics tested against commercial JS engine, and abstract semantics tested against concrete for soundness.

Analysis sensitivity (path, context, heap) is user configurable.



JSAI DESIGN OVERVIEW

Intermediate representation of JS programs (notJS)

Abstract semantics for notJS

Novel abstract domains for JS analysis



WHAT IS NOTJS?

Intermediate JS program representation using a formally-specified translation from 
JS.

Possesses formal concrete semantics.

Based on abstract syntax tree, not a control flow graph.

Higher order functions, implicit exceptions, implicit conversation types.

Imprecision and unsoundness.

Uses small step abstract machine operational semantics to model control-flow.

Aims to make abstract interpretation simple, precise, and efficient.



NOTJS ABSTRACT SYNTAX



WHY USE NOTJS?

“JavaScript’s many idiosyncrasies and quirky behaviors motivate 
the use of formal specifications for both the concrete JavaScript 
semantics and our abstract analysis semantics.”

Captures JavaScript behaviors.

Allows them to test against actual JavaScript implementations.

Allows for configurable sensitivity.



SEMANTICS FOR NOTJS

Concrete semantics model JS programs by starting with an initial program 
state (data structure) and applying transformation rules (functions) to 
continually generate the next state until the program terminates.

Abstract semantics provide a static analysis which over-approximates the 
concrete semantics.

Differences

Concrete State/Transformation Rules: Singleton/Deterministic

Abstract State/Transformation Rules: Set/Nondeterministic



JSAI ANALYSIS ALGORITHM



DOMAINS FOR THE ABSTRACT 
SEMANTICS

Abstract state consists of:

Term - notJS statement or abstract value after evaluating a statement.

Environment - Maps variables to sets of addresses.

Store - Maps address to abstract values, abstract objects, or sets of continuations.

Continuation Stack - Represents the computations still to be performed.

Trace - Allows for configureable context sensitivity.

Abstract values are:

Exception/jump values (handles non-local control flow)

Base values (represents JavaScript values)

Tuple of abstract numbers, booleans strings addresses, null, and undefined.

Each component is a lattice, which represents a type the value cannot contain, and represents an analysis.

These lattices result from a reduced product of the individual analyses.

All the domains in conjunction define a set of simultaneous analyses which include control flow, pointer, type inference and extended boolean, number and 
string constant propagation.



DOMAINS FOR THE ABSTRACT 
SEMANTICS (CONT.)

By default, JSAI’s abstract string (String#) domain is similar to TAJS’s, 
but is configureable along with the abstract number domain.

Their abstract object domain models objects as tuples containing:

A map from property names to values.

A list of definitely present properties.

(Novel) A map containing class-specific values as well as a record 
of which specific class this abstract object belongs to.



ABSTRACT SEMANTIC DOMAINS



ABSTRACT TRANSITION RULES

Describe how to get from a 
current state to a successor 
state.

Nondeterministic.



JSAI CONFIGURABILITY

Path-, context-, and heap- sensitivities configurable.

Implemented six main parameterized context sensitivities:

Context Insensitive

Stack CFA

Acyclic CFA

Object Sensitive

Signature CFA (Novel)

Mixed CFA (Novel)



EVALUATION SET-UP

Independent AWS instances.

15GB memory.

8 ECUs (1.0-1.2 GHz per ECU).

Tested k.h-stack, h-acyclic, k.h-obj, k.h-sig, and k.h-mixed.

k = k-limiting context depth.

h = heap sensitivity.

Benchmark Suites (28 total):

standard - Largest and most complex programs from SunSpider and V8.

addon - Firefox browser addons from Mozilla repository.

generated - Emscripten LLVM test suite generated programs translated to JavaScript

opensrc - Open source JavaScript framework programs

Measured execution time and precision.

Performance measured by running each analysis 11 times, discarding the first, and taking the median of the remaining 10.

Measure precision by the number of static program locations that might throw exceptions based on type tracking.



PERFORMANCE BAR GRAPH



PERFORMANCE RESULTS

Higher sensitivities can be more 
performant than their lower 
counterparts (5.4-stack on 
linq_dictionary).

Common knowledge was that k/h 
> 2 are unreasonably expensive.

Trend is not universal.



PRECISION RESULTS

Callstring-based sensitivities (k.h-
stack and h-acyclic) were more 
precise than object sensitivities.

Most precise and efficient were 
stack-based k-CFA.

Partly due to the 1/4 of the 
benchmark suite being machine-
generated.

Increased sensitivity does not 
always increase precision.



PRECISION VS. PERFORMANCE



JSAI VS TAJS

TAJS (Type Analysis for JavaScript) - Only static analysis for JavaScript which can soundly analyze the whole language.

Features that differentiate JSAI from TAJS:

Configurable sensitivity.

Formalized abstract semantics. 

Novel abstract domains.

No (discovered) bugs which decrease soundness.

Can analyze more benchmark suites.

Advantages of TAJS:

More precise implementation of core JavaScript APIs.

Possesses performance and precision optimizations (heap abstraction and lazy propagation).

Comparison

JSAI requires 0.3x to 1.8x more time to run.

JSAI reports 9 fewer to 104 more type errors.

JSAI reports at most 20 more type errors not including the bug.



CONCLUSIONS

Main contribution: JSAI, a configurable, sound and efficient 
abstract interpreter for JS.

Uses concrete and abstract semantics to model program 
execution and produce static analyses.

More precise context sensitive analyses are sometimes the most 
performant.

Only similar platform, TAJS, is unsound and difficult to accurately 
compare the two.


