Correlation Tracking for
Points-To Analysis of
JavaScript

M. Sridharan, J. Dolby, S. Chandra, M. Schaefer, F. Tip
ECOOP 2012

Present by Dong Chen

The contributions of this paper

* The authors show that a standard implementation of field-sensitive
Andersen’s points-to analysis extended to handle dynamic property
accesses has O(N 4) worst case running time, in contrast to the O(N
3) bound for other languages.

* The authors present a technique to address scalability issues caused
by dynamic property accesses

* The authors report on an implementation of their correlation
tracking technique on top of WALA and its application to JavaScript
frameworks

Dynamic Property Accesses

* Example from the paper:

o.foo = function f18 i return 23; i;
o.bar = function f2() { return 42;

o.foo();

4

f=p(*)? "foo" : "baz";
//writes to 0.foo or 0.baz
o[f] = "Hello , world!";

Correlated Pairs

* There is often an obvious correlation between the updated location
and the stored value which is ignored by the points-to analysis.

* For example,

function extend(dest,src) {
for (var prop in src)

// correlated accesses

dest[prop] = src[prop];

Andersen’s Analysis

Statement Constraint
x = {} {0*} C pt(x) [ALLOC]
v = “name” {name} C pt(v) [STRCONST]|
X =y pt(y) C pt(x) [AssIGN]|
e pt e pt
x[v] =y o € pt(x) s € pt(v) [STOREFIELD]|
pt(y) € pt(o.s)
t t
y = x[v] o € pt(z) s € pt(v) [LoADFIELD]
pt(o.s) C pt(y)
o € pt(x) 0.s exists
v = x.nextProp() [PROPITER]

{s} C pt(v)

Worst-Case Complexity

For Java: For JavaScript:
x.f=y X[v]=y
o € pt(x) o€ pt(x) s € pt(v)
pt(y) C pt(o.f) pt(y) C pt(o-s)

O(N3) O(N?)

e

=1

Problem

src = {}
dest = {}
src["ext"] = {}
src["ins"] = {}
prop = (*) 7 "ext'
t = src[prop];
dest [prop] = t;

o1 € pt{src)

04 € pt(o;.ins)

" inS L1 ;

between accesses

—— [Prop re-defined }

o1 € pt(src) ins € pi(prop)
pt(o,.ins) C pi(t)

04 € pt(t)

ext £ pt(prop) 07 € pt{dest)
pt(t) C pt{os.ext)

o4 € ptoz.ext)

Correlation Tracking Technique

* A technique that helps address issues caused by dynamic property
accesses by making the points-to analysis more precise.

* The key idea is to enhance Andersen’s analysis to track correlations
between dynamic property reads and writes that use the same
property name.

Correlation Tracking Technique

* Example:

1 src = {}

2 dest = {}

3 src["ext"] = {} 1 src = {}

4 src["ins"] = {} 2 dest = {}

5 1f (*) { 3 src["ext"] = {}
6 propl = "ext"; 4 src["ins"] = {}
7 tl = src[propl]; 5 prop = (*) ? "ext" : "ins";
] dest[propl] = tl; 6 (function(ff) {
9 } else { 7 t = src[ff];
10 prop2 = "ins"; 8 dest[ff] = t;
11 t2 = src[prop2]; 9 })(prop);

12 dest[prop2] = t2;
13 } (b)

(a)

Evaluation

* Five popular JavaScript frameworks and six benchmarks

* For each benchmark, the authors compared their techniques with
built-in WALA standard points-to analysis

Evaluation

Framework |Baseline™ |Baseline™ |Correlations™ |Correlations™
dojo * (%) * (%) 3.1 (30.4) 6.7 (%)
Jquery * * 78.5 *
mootools 0.7 * 3.1 *
prototype.js * * 4.4 4.5
yui * * 2.2 2.1

Table 3. Time (in seconds) to build call graphs for the benchmarks, averaged per

framework; ‘*’ indicates timeout. For dojo, one benchmark takes significantly longer
than the others, and is hence listed separately in parentheses.

Evaluation

Framework Baseline™ Baseline™ Correlations™ | Correlations™

dojo > 60.8% (>60.4%)|> 60.5% (>60.1%)[16.7% (24.5%)[18.8% (>28.3%)
jquery > 35.9% > 36.2% 26.7% > 31.5%
mootools 9.5% > 35.5% 9.5% > 10.9%
prototype.js > 40.5% > 40.7% 17.8% 18.7%
yui > 16.6% > 16.6% 12.0% 12.2%

Table 4. Percentage of functions considered reachable by our analysis, averaged by
framework; ‘>’ indicates that the number is a lower bound due to analysis timeout. As
before, numbers for the outlier on dojo are given separately.

Evaluation

Framework Baseline™ Baseline™ |Correlations™ |Correlations™
dojo >239.4 (>240)|>226.4 (>225) 0.0 (1) 1.0 (>11)
Jquery >244.0 >249.0 3.0 >9.0
mootools 0.0 >29.2 0.0 >0.0
prototype.js >164.5 >166.0 0.0 0.2
yui >29.0 >34.5 0.0 0.0

Table 5. Number of highly polymorphic call sites (i.e., call sites with more than five
call targets) for the benchmarks, averaged per framework; ‘>’ indicates that the result
is a lower bound due to timeout. The outlier on dojo is separated out.

Conclusion & Future Work

* These results clearly show that correlation tracking significantly
improves scalability and precision of field-sensitive points-to analysis
for a range of JavaScript frameworks.

* Finding and solving the further causes of complexity in the
frameworks

Q&A

