
Correlation Tracking for
Points-To Analysis of

JavaScript
M. Sridharan, J. Dolby, S. Chandra, M. Schaefer, F. Tip

ECOOP 2012

Present by Dong Chen



The contributions of this paper

• The authors show that a standard implementation of field-sensitive 
Andersen’s points-to analysis extended to handle dynamic property 
accesses has O(N 4) worst case running time, in contrast to the O(N 
3) bound for other languages.

• The authors present a technique to address scalability issues caused 
by dynamic property accesses

• The authors report on an implementation of their correlation 
tracking technique on top of WALA and its application to JavaScript 
frameworks



Dynamic Property Accesses

• Example from the paper:

o.foo = function f1() { return 23; };
o.bar = function f2() { return 42; };
o.foo();

f = p(*) ? "foo" : "baz";
//writes to o.foo or o.baz
o[f] = "Hello , world!";



Correlated Pairs

• There is often an obvious correlation between the updated location 
and the stored value which is ignored by the points-to analysis. 

• For example, 

function extend(dest,src) {
for (var prop in src)

// correlated accesses
dest[prop] = src[prop];

}



Andersen’s Analysis



Worst-Case Complexity

For Java:

x.f=y

O(N3)

For JavaScript:

x[v]=y

O(N4)



Problem

Prop re-defined 
between accesses



Correlation Tracking Technique

• A technique that helps address issues caused by dynamic property 
accesses by making the points-to analysis more precise. 

• The key idea is to enhance Andersen’s analysis to track correlations 
between dynamic property reads and writes that use the same 
property name. 



Correlation Tracking Technique

• Example:



Evaluation

• Five popular JavaScript frameworks and six benchmarks

• For each benchmark, the authors compared their techniques with 
built-in WALA standard points-to analysis



Evaluation



Evaluation



Evaluation



Conclusion & Future Work

• These results clearly show that correlation tracking significantly 
improves scalability and precision of field-sensitive points-to analysis 
for a range of JavaScript frameworks.

• Finding and solving the further causes of complexity in the 
frameworks



Q&A


