Practical Static Analysis of JavaScript Applications
in the Presence of Frameworks and Libraries

Authored by M Madsen, B Livshits, M Fanning
Aarhus University & Microsoft Research

ESEC / FSE 2013

Qutline

Motivation
Challenges
Approach & Key Techniques
Evaluation

Conclusion

Motivation

Research target

JavaScript applications execute in a rich execution environment
web programs

Server-side programs

Problem

Library and OS invocation codes are ignored and not well analyzed.

How to in-depth statically analyze:

JavaScript applications in the windows 8 OS ?

Win 8 JavaScript applications

A\

YV V VYV

Win8 Application

/ - DOM \I If/ WinRT \ (" Winis ¢~ Builtin \]

| ‘. [1k objects) / _ [1k objects) /

_ (45kobjects) J "-_h_{wk objects) /

This is the composition of a typical Windows 8 JavaScript
application.

Large size of library objects.

Depends on libraries communicating with HTML DOM
Uses Windows Runtime libraries

Used built-in DOM API and other popular libraries and
frameworks.

Challenges

Rely on environment libraries
Browser API

HTML DOM
Invoke OS libraries at Windows runtime

Popular libraries reflective JavaScript features
Reflective calls
Eval
Computed properties

Runtime modification of properties

Reason about the objects information return from
libraries & pass into callbacks

Approach & Key Techniques

_
1 Approach

Infer what the objects are based on observing uses of
library functionality within application code.

1 Key Techniques
Pointer analysis

Use analysis

Examples

N
1 Example 1: DOM-manipulating code snippet

var canvas = document.querySelector("#leftcol .logo");
var context = canvas.getContext|("2d");
context.fillRect (20, 20, c.width / 2, c.height / 2);

context.strokeRect (0, 0,| c.width)| |c. height);

Q: What object does querySelector return ?
A: HTMLCanvasElement

M: Use pointer analysis & use analysis

Examples

1 Example 2: Stubs from WinRT library

Windows.Storage.Stream.FileOutputStream = function() {};
Windows.Storage.Strean.FileOutputStream.prototype = {
writeAsync|= function() {7},

flushAsync = function() {3},

close = function() {}

}

var s = Windows.Storage.Stream; l

var fs = new s.FileOutputStream(...) Stub
fs.writeAsync(...) [thenkfunction() { tubs

e mms) Application

Q: What object does writeAsync return ?
A: Promise[Proto]

Examples
—

11 Example 3: Pointer analysis & use analysis

SAudioPrototype$ =
{

Volume = function(){},

Mute = function(){}

Actuals
function process(button){ l
if(button == ‘Mute’)
a flows to parameter x mute(a);
if(button == ‘Play’)

}

var a = Windows.Media.Audio; P

‘ playSDund

a flows to parameter y

Formals b “ r

Constraint “x has
function Velume”

Constraint “y has
function Mute”

‘_q-.h_,f_" propagates to a ——=__~ | propagatestoa
function playSound(x){’ functs
x.Volume(30); unction mute(y){

y-Mute();
¥

Pointer analysis

Uses Datalog declaration and analysis rules

Accepts an input program represented as a set of
relations. Domains:

H: Heap-allocated objects and functions

V: Program variables

C: Call sites

P: Properties

Z: Integers

Generate output relations representing the analysis
result, e.g.

Points-to relation
Call graph construction
Prototype chain relation

Pointer analysis — inference rules
B

POINTSTO(v, h) :— NEWOBI(v, h,_).

POINTSTO(vy, k) :— ASSIGN(vq1,v2), POINTSTO(v2, h).

POINTSTO(va, ho) :— LOAD(v2,v1,p), POINTSTO(vy, k1), HEAPPTSTO(Ry, p, ha).
HEAPPTSTO(R ., p. ha) :— STORE(vy,p,vs), POINTSTO(vy, hy), POINTSTO(vs, ha).
HEAPPTSTO(R1, p, ha) :— PROTOTYPE(h1, ha), HEAPPTSTO(ho, p, ha).

PROTOTYPE(h1, ha) :— NEWOBI(_, hq,v), POINTSTO(v, f), HEAPPTSTO(f, "prototype™, ha).
CALLGRAPH(e, f) :— ACTUALARG(e, 0, v), POINTSTO(v, f).

ASSIGN(vy, va) :— CALLGRAPH(c, f). FORMALARG(f,i,v1), ACTUALARG(c, i, v3), 2z > 0.
ASSIGN(va2, v1) :— CALLGRAPH(c, f), FORMALRET(f, v1), ACTUALRET(c, v2).

relations relations

Use analysis — Inference rules
N

RESOLVEDVARIABLE(v) :— PoINTSTO(v,).
PROTOTYPEOBI(h) :— PROTOTYPE(_, h).

DEADARGUMENT(f, i) FORMALARG(f, i, v), ~RESOLVEDVARIABLE(v), APPALLOC(f),i > 1.
DEADRETURN(c, va) .~ ACTUALARG(c,0, vy), POINTSTO(v,, f), ACTUALRET(c, v2).
—RESOLVEDVARIABLE(v2), ~APPALLOC(f).

DEADLOAD(R, p) :— LOAD(v;, vz, p). POINTSTO(v2, h), ~HASPROPERTY(h, p}, APPVAR(v,), APPVAR(v2).
DEADLOAD(h2. p) :— LOAD({v;, vz, p), POINTSTO(vz, hy), PROTOTYPE(hy, ha),

—HASPROPERTY (hz, p), SYMBOLIC(hz), APPVAR(v;), APPVAR(v2).
LOADDYNAMIC(2;, v2), POINTSTO(v2, h), "RESOLVEDVARIABLE(v,),

APPVAR(v,), APPVAR(v4).

DEADLOADDYNAMIC(v, , k)

DEADPROTOTYPE(hy) i~ NEWOBI_, h,v), POINTSTO(v,), SYMBOLIC(f), - HASSYMBOLICPROTOTYPE(k).

CANDIDATEOBIECT (k. ha) :— DEADLOAD(h,, p). HASPROPERTY (hz, p), SYMBOLIC(h; }, ~SYMBOLIC{ hz),
—HASDYNAMICPROPS(hy), ~HASDYNAMICPROPS(hy), ~SPECIALPROPERTY (p).
DEADLOAD(h,, p). HASPROPERTY (hg, p). SYMBOLIC(hy), ~SYMBOLIC (k).
—HASDYNAMICPROPS(hy), ~HASDYNAMICPROPS(hy), PROTOTYPEOBI(hz).

CANDIDATEPROTO(h,, hs)

NOLOCALMATCH(h,, ha)

PROTOTYPE(hs, hs),

¥p.DEADLOAD(h, . p) = HASPROPERTY (hs,p),
¥p.DEADLOAD(h;, p) = HASPROPERTY (hg, p),
CANDIDATEPROTO(Ry, ha), CANDIDATEPROTO(hy, hs), he # ha.

UNIFYPROTO(h1, hz) :— = NOLOCALMATCH(h1, hz), CANDIDATEPROTO(h1, hz).
¥p.DEADLOAD(h1, p) = HASPROPERTY (hz, p).

FOUNDPROTOTYPEMATCH(h) UNIFYPROTO(R, _).

UNIFYORIECT(h1, hz) :— CANDIDATEOBJECT(k1, hz), “FOUNDPROTOTYPEMATCH(h1)
¥p.DEADLOAD(h1, p) = HASPROPERTY (hz, p).

(b) Use analysis inference.

» Generate symbolic facts based on the facts and constraints after pointer analysis

> Recover missing flow(arguments, return values and loads) due to missing

implementations of libraries.

Application Heap

Lo
~o /

Use analysis — Heap Partitioning

"Symbolic Heap"

Library Heap

~ Abstract locations are used as approximation of runtime object

allocation in the program.

~ Distinguish abstract locations in between H,, H, and Hq

~ Symbolic locations are introduced for reasoning about abstract
locations returned by library calls where flow is dead due to libraries

Reference: “Practical Static Analysis of JavaScript Applications in the Presence of Frameworks
and Libraries” ppt

Use analysis — Unification

Dead flow scenarios
Dead Returns / Dead Arguments / Dead loads

Why

Variables within V domain normally have points-to links
to heap elements in H

Ignore library code and use of stubs

Missing interprocedural flow in the presence of libraries

Solution

Unification strategies

Unification strategies

Three unification strategies
Matching of at least one property
Too many objects get linked
Matching of all properties
Too few objects get linked
— Unsoundness & Imprecision
Prototype-based unification
1. Disallow commonly-used properties (e.g. prototype,
length) for unification
2. Consider most precise object in the prototype
hierarchy to unify first
Best — improve precision

Example — Prototype-based unification

]
var firstName = "Lucky";
var lastName = "Luke";
var favoriteHorse = "Jolly Jumper";

function|comparelgnoreCase(sl, s2) {

return sl.tolLowerCase

}

() < s2.toLowerCase();

» Function comparelgnoreCase is defined in application and is
used as callback passed into library.

» Return arguments s1 and s2 have toLowerCase property

~ However, all string constants have this property, should not unify

all of them

» Consider prototype object: String[Proto]

Inference Algorithm

lterative Inference Algorithm

Collects and records occurrence of dead
returns /arguments /loads

Introduces symbol location for each location

Perform unification: unifying symbolic objects with
appropriate application or library abstract locations

Terminates when no more dead flows can be founded
and no more unification can be performed

Use analysis — Other techniques

Extend Partial Inference to Full Inference

Do not assume existence of stubs, fully depends on uses found in
applications

Allow symbolic location to point to another symbolic location to resolve
limited dead loads

— While in partial inference, symbolic location is only
allowed to link to a non-symbolic location

Namespace Mechanisms
Solve the points-to problem of global variable

Solve missing prototype problems caused by JavaScript calls to library
constructors created by namespace mechanisms.

Introduce a special symbolic prototype object to deal with this case

Array Access and Dynamic Properties

Introduce a single symbolic object and inject it into array variables for
unification analysis.

Evaluation

Experimental Setup
Evaluate both partial and full inference algorithms
Evaluation Tool —
Front end: C#, parses JavaScript application and
generates input facts for analysis;
Back end: Z3 Datalog engine

Machine: Windows 7 machine, Xeon 64-bit 4-core
CPUT, 3.07 GHz with 6 GB of RAM

Results

Benchmarks

1 A set of 25 JavaScript applications

Alloe. Call
Lines Functions sites sites Properties Variables
245 11 128 113 231 470
345 74 66 345 208 1,749
402 i 236 137 208 769
434 51 282 194 336 1,007
488 53 389 216 303 1,102
627 59 341 239 353 1,230
47 36 634 175 477 1,333
711 315 1,806 827 670 5,038
735 66 457 242 363 1,567
807 70 4a7 287 354 1,600
827 33 357 149 315 1,370
843 63 532 268 300 1,704
1,010 138 045 614 451 3,223
1,079 84 989 722 396 2873
1,088 64 716 266 446 2,304
1,106 119 793 424 413 2,482
1,856 137 991 563 490 3,347
2,141 209 2,238 1,354 428 6,830
2,351 192 1,557 801 525 4412
2524 228 1,712 1,203 552 5,321
3,159 161 2,335 799 641 1.326
3,189 244 1333 939 54 6,297
3.243 108 1.654 740 515 4,517
3.638 305 2,529 1,153 537 7,139
6,169 506 3682 2004 725 12,667
| 1,587 1M 1147 63 442 3511 |

Fig. 9: Benchmarks, sorted by lines of code.

B = u . A

MName Lines Functions Alloc. sites Fields
Builtin 225 161 1,039 190
DOM 21,881 12,696 44047 1,326
Winls 404 346 1,114 445
Windows 8 API 7,213 2,970 13,980 3 834
Total 20723 16,173 61,080 5795

Fig. 2: Approximate stub sizes for widely-used libraries.

Stub size: 30,000 lines
Take stubs into account

- Application size: 1,587 lines

mnumber of applications
Is

(=] = [B8] (21}
1 1 1 1

1z S

10 -

roumidbeir off @p ol ica thon &
(=]

(5] (=11 =d
1 1

Call Graph Resolution

-5

O-5i0% S-b0rs

-0

Emizalime

G0-T0% T0-B07
partial inference

a-90e S0-100%

BO-WRE BO-1007:

Baseline: points-to analysis
without considering stubs.

Partial Inference Algorithm

Comparison:

baseline resolved much few
call sites

partial inference algorithm
is effective in recovering

missing flow

Case studies — WiInRT API Resolution

1
Technique APIs used > Resolve calls to WinRT APT in
naive analysis 684 Win 8 JavaScript applications
points-to T:JE}E | §$ » Partial inference and full
points-to + full 1:330 inference can find out much

Total 4.108 more WinRT uses

Case studies — Auto-complete
=

Eclipse Intelli] VS 2010 | VS 2012
Category Code v # v # v # v #
PARTIAL INFERENCE

T

var ¢ = document.getElementById(" canvas");
var ctx = c.getContext("2d");
1 DOM Loop varh — cheight: X 0 v 35 X 26 v 1
W o= C.H.
var p = {firstName : "John", lastName : "Doe" };
function compare(pi, p2) {
Callback var ¢ = pl.firstHame - p2.firstName: X 0 e g X 7 Ve k
if{c ! = 0) return c;
return pl.last.
}
var pl = {firstName : "John", lastName : "Doe” };
localStorage.putItem(” person”, pl);
3 Local Storage var p2 = localStorage.getItem(”person”); X 0 v 50+ X 7 X 7
document.writeln("Mr.” + p2.lastiame+
"+ pRal);

[

FULL INFERENCE
WinJ3.Namespace.define(” Game. Audic”,
play : function() {}, volume : function() {}
4 Namespace B
Game. Audio.velume(50);

X 0] 50+ | X 1 v k

Game. Audio. p.
athe var d = new Windows.UI.Popups.Messagelialog(); - = .
5 Paths var m = new Windows.UI... X o X 250+ X 7 v k

Fig. 15: Auto-complete comparison. + means that inference uses all identifiers in the program. “.)” marks the auto-complete point, the point
where the developer presses Ctrl+Space or a similar key stroke to trigger auto-completion.

Performance

Running time of partial and full analysis are quite
modest. (full analyses finish under 2-3 seconds)

Full inference requires more iterations to reach
fixpoint (approximately 2 to 3 times as many
iterations as partial inference)

Full inference is fast than partial inference (2 to 4
times faster): cost of stubs

Precision

and Soundness

App S E=S0F =
appl 16 120 1 20
app2 11 510 3 20
app3 12 500 3 20
appd 13 410 2 20
apps 13 401 2 20
app6 15 200 3 20
app7 20 000 0 20
app8 12 501 2 20
app? 12 500 3 20
appl0 11 403 2 20
Total 135 35@ 521 200

Manually inspected 20 call sites in 10
benchmarks

Check if approximated call targets match the
actual call targets

OK: the number of call sites which are both
sound and complete

Incomplete: the number of call sites are sound,
but have spurious targets (Imprecision)

Unsound: the number of call sites for which
some call targets are missing

Unknown: the number of call sites for which
unable to determine due to code complexity

Stubs: the number of call sites which are
unsolved due to problematic stubs.

Unsoundness & Imprecision
N

-1 Unsoundness
» Unable to deal with JSON data being pared
» Unable to deal with JavaScript type coercion
(Type coercion means that when the operands of an
operator are different types, one of them will be
converted to an "equivalent" value of the other

operand's type. For instance: boolean == integer, the
boolean operand will be converted to an integer first)

01 Imprecision
~ Property names shares between different objects.

~ Stub errors

Conclusions

Approach proposed combining classic points-to analysis
with use analysis

Able to analyze practical large JavaScript applications
using complex windows runtime libraries and
sophisticated JavaScript libraries

Improve precision and scalability

Useful for other applications: APl use discovery and
auto-completion

Questions ?

Thanks!

