
Practical Static Analysis of JavaScript Applications

in the Presence of Frameworks and Libraries

Authored by M Madsen, B Livshits, M Fanning

Aarhus University & Microsoft Research

ESEC / FSE 2013

Presented by Jing Pu

 Motivation

 Challenges

 Approach & Key Techniques

 Evaluation

 Conclusion

Outline

Motivation

 Research target

 JavaScript applications execute in a rich execution environment

 web programs

 Server-side programs

 Problem

Library and OS invocation codes are ignored and not well analyzed.

 How to in-depth statically analyze:

JavaScript applications in the windows 8 OS ?

Win 8 JavaScript applications

 This is the composition of a typical Windows 8 JavaScript

application.

 Large size of library objects.

 Depends on libraries communicating with HTML DOM

 Uses Windows Runtime libraries

 Used built-in DOM API and other popular libraries and

frameworks.

Challenges

 Rely on environment libraries

 Browser API

 HTML DOM

 Invoke OS libraries at Windows runtime

 Popular libraries reflective JavaScript features

 Reflective calls

 Eval

 Computed properties

 Runtime modification of properties

 Reason about the objects information return from
libraries & pass into callbacks

Approach & Key Techniques

 Approach

 Infer what the objects are based on observing uses of

library functionality within application code.

 Key Techniques

 Pointer analysis

 Use analysis

Examples

 Example 1: DOM-manipulating code snippet

Q: What object does querySelector return ？

A: HTMLCanvasElement

M: Use pointer analysis & use analysis

 Example 2: Stubs from WinRT library

Examples

Stubs

Application

Q: What object does writeAsync return ？

A: Promise[Proto]

Examples

 Example 3: Pointer analysis & use analysis

Actuals

Formals

Pointer analysis

 Uses Datalog declaration and analysis rules

 Accepts an input program represented as a set of
relations. Domains:

 H: Heap-allocated objects and functions

 V: Program variables

 C: Call sites

 P: Properties

 Z: Integers

 Generate output relations representing the analysis
result, e.g.

 Points-to relation

 Call graph construction

 Prototype chain relation

Pointer analysis – inference rules

Output

relations

Input

relations

Use analysis – Inference rules

 Generate symbolic facts based on the facts and constraints after pointer analysis

 Recover missing flow(arguments, return values and loads) due to missing

implementations of libraries.

Use analysis – Heap Partitioning

 Abstract locations are used as approximation of runtime object

allocation in the program.

 Distinguish abstract locations in between HA, HL and HS

 Symbolic locations are introduced for reasoning about abstract

locations returned by library calls where flow is dead due to libraries

 Reference: “Practical Static Analysis of JavaScript Applications in the Presence of Frameworks

and Libraries” ppt

Use analysis – Unification

 Dead flow scenarios

 Dead Returns / Dead Arguments / Dead loads

 Why

 Variables within V domain normally have points-to links
to heap elements in H

 Ignore library code and use of stubs

 Missing interprocedural flow in the presence of libraries

 Solution

 Unification strategies

Unification strategies

 Three unification strategies

 Matching of at least one property

 Too many objects get linked

 Matching of all properties

 Too few objects get linked

 – Unsoundness & Imprecision

 Prototype-based unification

 1. Disallow commonly-used properties (e.g. prototype,

 length) for unification

 2. Consider most precise object in the prototype

 hierarchy to unify first

 Best – improve precision

Example – Prototype-based unification

 Function compareIgnoreCase is defined in application and is
used as callback passed into library.

 Return arguments s1 and s2 have toLowerCase property

 However, all string constants have this property, should not unify
all of them

 Consider prototype object: String[Proto]

Inference Algorithm

 Iterative Inference Algorithm

 Collects and records occurrence of dead
returns/arguments/loads

 Introduces symbol location for each location

 Perform unification: unifying symbolic objects with
appropriate application or library abstract locations

 Terminates when no more dead flows can be founded
and no more unification can be performed

Use analysis – Other techniques

 Extend Partial Inference to Full Inference
 Do not assume existence of stubs, fully depends on uses found in

applications

 Allow symbolic location to point to another symbolic location to resolve
limited dead loads

 – While in partial inference, symbolic location is only

 allowed to link to a non-symbolic location

 Namespace Mechanisms
 Solve the points-to problem of global variable

 Solve missing prototype problems caused by JavaScript calls to library
constructors created by namespace mechanisms.

 Introduce a special symbolic prototype object to deal with this case

 Array Access and Dynamic Properties
 Introduce a single symbolic object and inject it into array variables for

unification analysis.

Evaluation

 Experimental Setup

 Evaluate both partial and full inference algorithms

 Evaluation Tool –

 Front end: C#, parses JavaScript application and

 generates input facts for analysis;

 Back end: Z3 Datalog engine

 Machine: Windows 7 machine, Xeon 64-bit 4-core
CPUT, 3.07 GHz with 6 GB of RAM

 Results

Benchmarks

 A set of 25 JavaScript applications

Stub size: 30,000 lines

Take stubs into account

Application size: 1,587 lines

Call Graph Resolution

 Baseline: points-to analysis

without considering stubs.

 Partial Inference Algorithm

 Comparison:

 baseline resolved much few

 call sites

 partial inference algorithm

 is effective in recovering

 missing flow

Case studies – WinRT API Resolution

 Resolve calls to WinRT APT in

Win 8 JavaScript applications

 Partial inference and full

inference can find out much

more WinRT uses

Case studies – Auto-complete

Performance

 Running time of partial and full analysis are quite

modest. (full analyses finish under 2-3 seconds)

 Full inference requires more iterations to reach

fixpoint (approximately 2 to 3 times as many

iterations as partial inference)

 Full inference is fast than partial inference (2 to 4

times faster): cost of stubs

Precision and Soundness

 Manually inspected 20 call sites in 10

benchmarks

 Check if approximated call targets match the

actual call targets

 OK: the number of call sites which are both

sound and complete

 Incomplete: the number of call sites are sound,

but have spurious targets (Imprecision)

 Unsound: the number of call sites for which

some call targets are missing

 Unknown: the number of call sites for which

unable to determine due to code complexity

 Stubs: the number of call sites which are

unsolved due to problematic stubs.

Unsoundness & Imprecision

 Unsoundness

 Unable to deal with JSON data being pared

 Unable to deal with JavaScript type coercion

 (Type coercion means that when the operands of an

 operator are different types, one of them will be

 converted to an "equivalent" value of the other

 operand's type. For instance: boolean == integer, the
boolean operand will be converted to an integer first)

 Imprecision

 Property names shares between different objects.

 Stub errors

Conclusions

 Approach proposed combining classic points-to analysis
with use analysis

 Able to analyze practical large JavaScript applications
using complex windows runtime libraries and
sophisticated JavaScript libraries

 Improve precision and scalability

 Useful for other applications: API use discovery and
auto-completion

Questions ?

Thanks!

