
Practical Static Analysis of JavaScript Applications

in the Presence of Frameworks and Libraries

Authored by M Madsen, B Livshits, M Fanning

Aarhus University & Microsoft Research

ESEC / FSE 2013

Presented by Jing Pu

 Motivation

 Challenges

 Approach & Key Techniques

 Evaluation

 Conclusion

Outline

Motivation

 Research target

 JavaScript applications execute in a rich execution environment

 web programs

 Server-side programs

 Problem

Library and OS invocation codes are ignored and not well analyzed.

 How to in-depth statically analyze:

JavaScript applications in the windows 8 OS ?

Win 8 JavaScript applications

 This is the composition of a typical Windows 8 JavaScript

application.

 Large size of library objects.

 Depends on libraries communicating with HTML DOM

 Uses Windows Runtime libraries

 Used built-in DOM API and other popular libraries and

frameworks.

Challenges

 Rely on environment libraries

 Browser API

 HTML DOM

 Invoke OS libraries at Windows runtime

 Popular libraries reflective JavaScript features

 Reflective calls

 Eval

 Computed properties

 Runtime modification of properties

 Reason about the objects information return from
libraries & pass into callbacks

Approach & Key Techniques

 Approach

 Infer what the objects are based on observing uses of

library functionality within application code.

 Key Techniques

 Pointer analysis

 Use analysis

Examples

 Example 1: DOM-manipulating code snippet

Q: What object does querySelector return ？

A: HTMLCanvasElement

M: Use pointer analysis & use analysis

 Example 2: Stubs from WinRT library

Examples

Stubs

Application

Q: What object does writeAsync return ？

A: Promise[Proto]

Examples

 Example 3: Pointer analysis & use analysis

Actuals

Formals

Pointer analysis

 Uses Datalog declaration and analysis rules

 Accepts an input program represented as a set of
relations. Domains:

 H: Heap-allocated objects and functions

 V: Program variables

 C: Call sites

 P: Properties

 Z: Integers

 Generate output relations representing the analysis
result, e.g.

 Points-to relation

 Call graph construction

 Prototype chain relation

Pointer analysis – inference rules

Output

relations

Input

relations

Use analysis – Inference rules

 Generate symbolic facts based on the facts and constraints after pointer analysis

 Recover missing flow(arguments, return values and loads) due to missing

implementations of libraries.

Use analysis – Heap Partitioning

 Abstract locations are used as approximation of runtime object

allocation in the program.

 Distinguish abstract locations in between HA, HL and HS

 Symbolic locations are introduced for reasoning about abstract

locations returned by library calls where flow is dead due to libraries

 Reference: “Practical Static Analysis of JavaScript Applications in the Presence of Frameworks

and Libraries” ppt

Use analysis – Unification

 Dead flow scenarios

 Dead Returns / Dead Arguments / Dead loads

 Why

 Variables within V domain normally have points-to links
to heap elements in H

 Ignore library code and use of stubs

 Missing interprocedural flow in the presence of libraries

 Solution

 Unification strategies

Unification strategies

 Three unification strategies

 Matching of at least one property

 Too many objects get linked

 Matching of all properties

 Too few objects get linked

 – Unsoundness & Imprecision

 Prototype-based unification

 1. Disallow commonly-used properties (e.g. prototype,

 length) for unification

 2. Consider most precise object in the prototype

 hierarchy to unify first

 Best – improve precision

Example – Prototype-based unification

 Function compareIgnoreCase is defined in application and is
used as callback passed into library.

 Return arguments s1 and s2 have toLowerCase property

 However, all string constants have this property, should not unify
all of them

 Consider prototype object: String[Proto]

Inference Algorithm

 Iterative Inference Algorithm

 Collects and records occurrence of dead
returns/arguments/loads

 Introduces symbol location for each location

 Perform unification: unifying symbolic objects with
appropriate application or library abstract locations

 Terminates when no more dead flows can be founded
and no more unification can be performed

Use analysis – Other techniques

 Extend Partial Inference to Full Inference
 Do not assume existence of stubs, fully depends on uses found in

applications

 Allow symbolic location to point to another symbolic location to resolve
limited dead loads

 – While in partial inference, symbolic location is only

 allowed to link to a non-symbolic location

 Namespace Mechanisms
 Solve the points-to problem of global variable

 Solve missing prototype problems caused by JavaScript calls to library
constructors created by namespace mechanisms.

 Introduce a special symbolic prototype object to deal with this case

 Array Access and Dynamic Properties
 Introduce a single symbolic object and inject it into array variables for

unification analysis.

Evaluation

 Experimental Setup

 Evaluate both partial and full inference algorithms

 Evaluation Tool –

 Front end: C#, parses JavaScript application and

 generates input facts for analysis;

 Back end: Z3 Datalog engine

 Machine: Windows 7 machine, Xeon 64-bit 4-core
CPUT, 3.07 GHz with 6 GB of RAM

 Results

Benchmarks

 A set of 25 JavaScript applications

Stub size: 30,000 lines

Take stubs into account

Application size: 1,587 lines

Call Graph Resolution

 Baseline: points-to analysis

without considering stubs.

 Partial Inference Algorithm

 Comparison:

 baseline resolved much few

 call sites

 partial inference algorithm

 is effective in recovering

 missing flow

Case studies – WinRT API Resolution

 Resolve calls to WinRT APT in

Win 8 JavaScript applications

 Partial inference and full

inference can find out much

more WinRT uses

Case studies – Auto-complete

Performance

 Running time of partial and full analysis are quite

modest. (full analyses finish under 2-3 seconds)

 Full inference requires more iterations to reach

fixpoint (approximately 2 to 3 times as many

iterations as partial inference)

 Full inference is fast than partial inference (2 to 4

times faster): cost of stubs

Precision and Soundness

 Manually inspected 20 call sites in 10

benchmarks

 Check if approximated call targets match the

actual call targets

 OK: the number of call sites which are both

sound and complete

 Incomplete: the number of call sites are sound,

but have spurious targets (Imprecision)

 Unsound: the number of call sites for which

some call targets are missing

 Unknown: the number of call sites for which

unable to determine due to code complexity

 Stubs: the number of call sites which are

unsolved due to problematic stubs.

Unsoundness & Imprecision

 Unsoundness

 Unable to deal with JSON data being pared

 Unable to deal with JavaScript type coercion

 (Type coercion means that when the operands of an

 operator are different types, one of them will be

 converted to an "equivalent" value of the other

 operand's type. For instance: boolean == integer, the
boolean operand will be converted to an integer first)

 Imprecision

 Property names shares between different objects.

 Stub errors

Conclusions

 Approach proposed combining classic points-to analysis
with use analysis

 Able to analyze practical large JavaScript applications
using complex windows runtime libraries and
sophisticated JavaScript libraries

 Improve precision and scalability

 Useful for other applications: API use discovery and
auto-completion

Questions ?

Thanks!

