
State-Sensitive Points-to
Analysis for the Dynamic

Behavior of JavaScript Objects
Shiyi Wei and Barbara G. Ryder

ECOOP 2014

Presented by ke tian

Outlines:
What is the problem?

track the changes of object properties

What is the solution/contribution?
state-sensitive points-to analysis
+ a new control-flow graph representation

How efficient is the solution?
significant improvement (+11% precision)

Background (__proto__)
b

c 30

__proto__

Foo.prototype

y 20

constructor function
Function() {
[native code] }

__proto__

Object.prototype

How to (formally) describe a JavaScript Object?

Def 1. is used to describe a type (not constant) of a JavaScript
object

Def 2. Write and delete operations can result in state-update,
affect obj-ref states

An example of obj-ref state
P2 Conflicts

P4 Conflicts

prototype

Local O3
override the
property p2,

thus O6 is not
accessible

Obj-Ref(O1)={O1,O2,O3,O4,O5,O7,O8}

Motivating example (the problem)

Run-time points-to graph at line 10

P() Y1()

Y2() Z()

X(true)

Obj-Ref(O7)={O7, O3,O4,O9}

create

Line 10

Motivating example (the problem)

Run-time points-to graph at line 15

X(true)

Obj-Ref(O7)={O7, O12,O3,O14}

A()

Z()

Z()Conclusion: Obj-Ref(O7) can be changed during the runtime

What is the problem? (imprecision)

1 constructor polymorphism
(O7.q)

2 Object property change
3 Function invocation

x.bar(x.p,z1) [line 10]
x.p.f = z1(O9)
E.g.,not knowing O4 exists

extra : (O1 -> O9)

Flow- and Context- insensitive points-to graph (whole) If we have Obj-Ref(O7)={O7, O3,O4} line 9

Extra

What is the Solution? (state-preserving block graph)
 Split the CFG

based on state-
update

Statement
(new/delete)
1->
(1’,x=newA(),1’’)

 Aggregate the
state-preserving
nodes in the
graph

Partial flow sensitive

State-preserving
Node

Points-to graph representation

Used for object creation
(in transfer function)

P* means the relation
MAY not exist (safety)

Traditional points-to graph

Help us to (strongly) determine
the property of variable

Φ𝑜 = {@𝑜, 𝑜}

Transfer functions (update points-to graph)

Object creation (x =new X(a1,a2,…, an))

Property write (x.p = y) [example]

Property delete (delete x.p)

Direct write (x = y)

Property read (x = y.p)

Method invocation (x =y.m(a1,a2,…an))

Complex Algebra

Transfer rule (example x.p = y)

Strong update:
Delete (<x,p> ,O4)

Add(<x,p>, O3)
Add(<x,p>, O2)
Weak update:

Add(<O1,p*>, O3)
Add(<O1,p*>, O2)

Approximation (reduce analysis overhead)
use obj-ref state as context

Trade-off :Lose the (some) precision but increase scalability

Local properties

Prototype chain

How efficient is the solution?

New Points-to graph at line 10

O5

q

Approximate Obj-Ref(O7)
C1= {O7,

p:O4, (NO O1 here!!!)
__proto__ : O3

}

insensitive Points-to graph at line 10

How efficient is the solution?

Points-to graph at line 10 (if p*)

What if O7 -(p*)-> O4?
C1={O7,
p:O4,O1,
__proto__:O3}

P* f*

Compare with the ground truth graph

New Points-to graph at line 10 (the
authors’ approach) Figure 7(a)

Run-time Points-to graph at line 10
Fig 3(a)

Measurement (# of return objects)

y O1

O2

O3

proto

p

O4

p

x = y.p:
Return {O2} better than return {O2,O4}

x = y.p/x=y.p(…)
[statement s/context c]

REF(s,c) = How many
objects will be returned

Through lookuping

Better
performance
48-37 % =11%

Corr: correlation
tracking …
CorrBSSS: the
authors’ appraoch

Overhead (acceptable)

Average overhead

Q&A

 What is “state-sensitive”? and the relation with context sensitivity.

 Others….

Context sensitivity

Object ….

Call-site …

State …

