State-Sensitive Points-to
Analysis for the Dynamic
Behavior of JavaScript Objects

Shiyi Wei and Barbara G. Ryder
ECOOP 2014
Presented by ke tian

Outlines:
*What is the problem?

track the changes of object properties

*What is the solution/contribution?

state-sensitive points-to analysis
+ a new control-flow graph representation

*How efficient is the solution?
significant improvement (+11% precision)

Background (proto)

Edit This Code- Result:

<!DOCTYPE html>

Test By Ke

<html:> C 30
<body> [object Object]

30 _proto_
<p>Test By Ke</br></p> 0

<p id="demo"></p> true

function Foo(v) {this v =v:}
<script: Y

function Foo(y){this.y = y;}

var b = new Foo(28);
b.c = 3@;

Yy 20

constructor function
Function() {
[native code] }

document.getEl tById("demo™).innerHTML =
(b. proto__) + "</br>"+
(b.c) + "</br>"+
(b.y) + "</br>" +
(b. proto_ == Foo.prototype) +'</br>" +
(b.constructor|) __proto___

¥

<fscript>

Object.prototype

</body>
</htmlz e

How to (formally) describe a JavaScript Object?

Definition 1. The obj-ref state at a program point denotes all of its
accessible properties and their non-primitive values.

Def 1. is used to describe a type (not constant) of a JavaScript
object

Definition 2. State-update statements are: (1) property write statement
(i.e., z.p = y or z|'p'] = y), (2) property delete statement (i.e., delete x.p
or delete x['p']), and (3) an invocation that directly or indirectly results
in execution of (1) and/or (2).

Def 2. Write and delete operations can result in state-update,

affect obj-ref states

, Local O3
An example of obj-ref state override the

w property p2,
@ thus 06 is not

sroto accessible

P1 -
OO
_proto__ _proto “ ’ ﬁ‘w
? - :
o)

Fig. 1. obj-ref state for O;. (Unshaded nodes only)

Obj-Ref(01)={01,02,03,04,05,07,08}

Motivating example (the problem)

function P(){ this.p = new Y1(); }
function X(b){

this.__proto__ = new P(); crea

if(b) { this.p = new Y2(); }
else this.q = new Y3();

}

var ¥ = new X(true);

0o =] O O = W N =

X.bar

function(v, z){ v.f = z; }
0 var zl = new Z(1i////////r//’//////////
10 x.bar(x.p, zl); Llne 10

12 x.p = new AQ);

14 wvar z2 = new Z();

15 =x.bar(x.p,z2);

Run-time points-to graph at line 10

Motivating example (the problem)

9 wvar =zl

1 function P(){ this.p = new Y1(); }

2 function X(b){

3 this.__proto__ = new P();

4 if(b) { this.p = new Y2(); }

5 else this.q = new Y3();

6 3}

7 wvar x = new X(true); X(true)
8 x.bar = function(v, z){ v.f = z; }

= new Z();
10 x.bar(x.p, zl1);

12 x.p =

Conclusion: Obj-Ref(O7) can be changed during the runtime

14 wvar z2

= new Z(l}//// e

15 =x.bar(x.p,z2);

What is the problem? (imprecision)

* 1 constructor polymorphism
(07.9)

* 2 Object property change
* **3 Function invocation™*
) X.bar(x.p,z1) [line 10]
x.p.f =z1(09)

E.g.,not knowing O4 exists
extra : (O1 -> 09)

What is the Solution? (state-preserving block graph)
* Split the CFG

,f@ based on state-
update

x = new A(); Statement

(prea:b 3. (new/delete)

(1 ,x=newA(),1”)

- Aggregate the

Fd
M
. state-preserving
succ: a ' .
nodes in the

succ:a, b

I
graph

State-preserving (b)

Node
Fig.4. SPBG generation. (a) CFG. (b) SPBG. Partial flow sensitive

—_—

Points-to graph representation

Table 1. Expanded points-to graph with annotations

points-to

graph

G

—

variable V
v
node i
) abstract object O
N 0
in-construction—| '/@_ﬂ\
object @o -
variable reference v —@
(v, &
edge
5 property reference (o_l D o
E [:{ @0, P :}:{.D":'j}]
access path v _D@]
(< v,p >, $0) |
: pd
d annotation y ——
annotation p?
A ¢ - P,
y annotation 0, —

*

p

|

" (in transfer function)
/'

Used for object creation

o = {@o0, 0}

u Traditional points-to graph

—

Help us to (strongly) determine
the property of variable

P* means the relation
MAY not exist (safety)

Transfer functions (update points-to graph)

* Object creation (x =new X(al,a2,..., an))
* Property write (x.p = y) [example]

* Property delete (delete x.p)

* Direct write (x = y)

* Property read (x = y.p)

* Method invocation (x =y.m(al,a2,...an))

Complex Algebra

Strong update:
Delete (<x,p> ,04)
Add(<x,p>, 03)
Add(<x,p>, 02)

"~ Weak update:
~ Add(<01,p*>, 03)
 Add(<01,p*>, 02)

Transfer rule (example x.p =y)

Fig. 5. Property write example. (a) Input points-to graph. (b) Updated points-to
graph.

Approximation (reduce analysis overhead)
use obj-ref state as context

Fig. 6. Approximate obj-ref state as a context. (a) obj-ref state of O1. (b) Approximate
obj-ref state of O1.

Trade-off :Lose the (some) precision but increase scalability

icient is the solution?

Approximate Obj-Ref(O7)
C1={07,
p:04, (NO O1 herelll)

__:03

00 =1 & O = W o =

9 wvar z1 = new Z();
10 x.bar(x.p, z1);

12 x.p = new A(Q);

14 wvar z2 = new Z();
15 =x.bar(x.p,z2);

insensitive Points-to graph at line 10 Fig. 2. JavaScript example

icient is the solution?

What if 07 -(p*)-> 047
C1={07,

__proto_ :03}

8 x.bar = function(v, z){ v.f = z; }
9 wvar zl1 = new Z();

10 x.bar(x.p, z1);

11 ...

12 x.p = new A(Q);

13

14 wvar z2 = new Z();

15 =x.bar(x.p,z2);

Points-to graph at line 10 (if p*) Fig. 2. JavaScript example

Compare with the ground truth graph

x | Obj-ref(07)

Weak update

New Points-to graph at line 10 (the

authors’ approach) Figure 7(a)

CONtEext

(a) Access path

Run-time Points-to graph at line 10
Fig 3(a)

Measurement (# of return objects)

X = V.p:

Return {02} better than return {02,04} [Sta:e:n»;%x:/xclfrglc;)xt]
. REF(s,c) = How many

@ objects will be returned

@ Through lookuping

The smaller #,
\@ the better precision

Table 4. REF analysis precision

Website Corr CorrBSSS

1 2-4 > 5 1 2-4 >5

facebook.com 38% | 52% | 10% | 50% | 47% 3%
google.com 32% | 51% | 17% | 53% | 42% 5%
youtube.com 41% | 47% | 12% | 54% | 41% 5%
yahoo.com 48% | 46% 6% | 52% | 45% 3%
wikipedia.org 20% | 45% | 26% | 43% | 39% | 18%
AIMAazon.com 45% | 52% 3% | 46% | 51% 3%
twitter.com 32% | 53% | 1% | 39% | 49% | 12%
blogspot.com 35% | 34% | 31% | 53% | 36% | 11%
linkedin.com 34% | 49% | 17T% | 44% | 50% 6%
MS1.COIm 0% | 36% | 24% | 48% | 37% 15%
ebay.com 30% | 40% | 30% | 46% | 40% | 14%
bing.com 41% | 34% | 25% | 54% | 3% 9%
Geom. Mean 37%) 44% | 15% (| 48%)| 43% 7%

Corr: correlation
tracking ...

CorrBSSS: the
authors’ appraoch

Better

performance
48-37 % =11%

Overhead (acceptable)

Table 5. REF analysis cost (in seconds) on average per webpage

Website Corr CorrBSSS| overhead
facebook 17.4 45.9 163%
google 13.0 30.4 134%
youtube 31.2 75.3 141%
yahoo 28.5 54.1 90%
wiki 16.0 40.1 151%
amazon 15.1 24.2 61%
twitter 38.1 94.5 148%
blog 15.9 42.4 137%
linkedin 27 .8 62.0 167%
msn 34.4 57.9 68%
ebay 8.3 27.2 227% Average overhead
bing 291 50.4 128% /
Geom. Mean 20.4 46.7 127%)

Q&A

* What is “state-sensitive”? and the relation with context sensitivity.

Context sensitivity

Object
Call-site ...
State ...

* Others....

