
Thin Slicing

Authored by Manu Sridharan, Stephen J. Fink, Rastislav Bodík

University of California, Berkeley & IBM T.J. Watson Research Center

PLDI 2007

Presented by Jing Pu

 Motivation

 Approach

 Definitions & Key Techniques

 Evaluation

 Conclusion

Outline
1

Motivation

 Debugging and Program Understanding tasks

 Finding buggy statement, diagnose bug (find most relevant

statements to the bug)

 Understanding relevant statements, e.g., aliasing, important

conditionals

 Drawbacks of traditional static slicing techniques

 Overly Broad relevance definition

 Slice Pollution

2

Approach

 Thin Slicing

 Redefine relevance – intuitive semantic definition

 Hierarchical expansion – providing additional

information

 Terminology

 Seed statement

 Producer statement

 Explainer statement

 Dependences

3

Definitions – producer statements
4

 Seed statement

A statement or value of interest, e.g., the position in a program
where an error occurs

 Producer statement

 Statement s1 is a producer for statement s2 if s1 is part of
a chain of assignments that computes and copies a value to
s2

 S2 – seed / other producer

 Direct uses of memory locations (variables & object fields)

 Explainer statement

None-producer statements:

 Heap-based value flow

 Control flow

Definitions – Dependences
5

 Thin slicing

Producer flow dependences

Ignore:
 Base pointer flow dependences
 Control dependences

 Most Tasks

Very few explainers are needed

 Answer more questions, need more explanation

 Expand thin slices, need ignored dependences

Examples
6

 Example 1: A dependence graph for a program

Heap-based value flow

Control flow
 Direct uses of memory locations in the thin

slicing for the seed

Examples (cont’d)
7

 Example 2:

thin slices expansion

Diagnose bug:

Which statements cause the

‘this’ pointers of close() and

isOpen() to be aliased

Bug

Error

Exception

Computing thin slices
8

 Step 1: Do precise pointer analysis:

 Compute call graph

 compute may-mod and may-use sets for each method

 Step 2: Build a CFG for each method in the program

 Step 3: Compute each CFG’s control and data dependences

 Step 4: Build PDG for each CFG

 Step 5: Connect the PDGs to form the SDG:

 Context-Insensitive/Context-sensitive : Add direct edges for heap

access statements

Reference: “Slicing Java Programs that Throw and Catch Exceptions”

Computing thin slices – Modification
9

 Data dependences for heap access statements

For a statement x.f := e, we add an edge to each statement with
an expression w.f on its right-hand side, such that the
precomputed points-to analysis indicates x may-alias w.

 Context-Insensitive Thin Slicing

 Add direct edges across procedure

 Do not use heap parameters

 Context-sensitive Thin Slicing

 Add direct edges in the same procedure

 Use extra parameters and return values to model heap
access

Evaluation
10

 Experimental Setup

 Implemented thin slicing (context-insensitive/ context-

sensitive)& traditional slicing (context-insensitive / context-

sensitive) using WALA

 Used SUN JDK 1.4.2_09 standard library code

 Machine: A Lenovo ThinkPad t60p with dual 2.2GHz Intel

T2600 processors and 2GB RAM

 Analyzer: ran on the Sun JDK 1.5_07 using at most 1GB of

heap space.

 Benchmarks: SIR, SPECjvm98

Evaluation (cont’d)
11

Benchmark characteristics: derived from methods discovered

during on-the-fly call graph construction, including Java

library methods

Evaluation (cont’d)
12

 Key points

 uses injected bugs from the SIR suite

 Seed: as the point of failure

 Desired statements: the cause of the bug

 Control dependence: manually pre-determined

 Scalability

 context-insensitive (thin/traditional) :good

 context-sensitive traditional for small codes: good

 context-sensitive traditional for large codes: bad

 Precision

 Traditional: Measuring Slice Size

 New Approach: Use a breadth-first traversal strategy to simulate the statements
inspecting process done by the user, terminated when discover all required
statements for original problem

 context-sensitive thin: not practical

Experiment 1 – Locating bugs
13

 Target

 Check if thin slices include the buggy statement

 Compare inspected slice size (thin / traditional)

aliasing

control

dependence

Experiment 2 – Program understanding
14

 What is a tough cast ?

 Thin Slicing – Understanding the safety of tough cast

Tough Cast

Experiment 2 (cont’d)
15

 Investigate 10 random tough casts for each SPEC benchmark

 Compared BFS traversal sizes to manually identified required statements
size

Threats to validity
16

 Uses injected bugs from the SIR suite

 Use BFS traversal to simulate user process

 Use of whole-program pointer analysis and call

graph construction for the thin slicer may not scale to

larger benchmarks

Conclusions
17

 Thin slices lead the user to desired statements

 Thin slices focus better on desired statements than

traditional slices

 A precise pointer analysis is key to effective thin

slicing

 Thin slices can be computed efficiently:

 context-insensitive thin slicing algorithm scaled well

 to large programs

Questions ?

Thanks!

18

