
Thin Slicing

Authored by Manu Sridharan, Stephen J. Fink, Rastislav Bodík

University of California, Berkeley & IBM T.J. Watson Research Center

PLDI 2007

Presented by Jing Pu

 Motivation

 Approach

 Definitions & Key Techniques

 Evaluation

 Conclusion

Outline
1

Motivation

 Debugging and Program Understanding tasks

 Finding buggy statement, diagnose bug (find most relevant

statements to the bug)

 Understanding relevant statements, e.g., aliasing, important

conditionals

 Drawbacks of traditional static slicing techniques

 Overly Broad relevance definition

 Slice Pollution

2

Approach

 Thin Slicing

 Redefine relevance – intuitive semantic definition

 Hierarchical expansion – providing additional

information

 Terminology

 Seed statement

 Producer statement

 Explainer statement

 Dependences

3

Definitions – producer statements
4

 Seed statement

A statement or value of interest, e.g., the position in a program
where an error occurs

 Producer statement

 Statement s1 is a producer for statement s2 if s1 is part of
a chain of assignments that computes and copies a value to
s2

 S2 – seed / other producer

 Direct uses of memory locations (variables & object fields)

 Explainer statement

None-producer statements:

 Heap-based value flow

 Control flow

Definitions – Dependences
5

 Thin slicing

Producer flow dependences

Ignore:
 Base pointer flow dependences
 Control dependences

 Most Tasks

Very few explainers are needed

 Answer more questions, need more explanation

 Expand thin slices, need ignored dependences

Examples
6

 Example 1: A dependence graph for a program

Heap-based value flow

Control flow
 Direct uses of memory locations in the thin

slicing for the seed

Examples (cont’d)
7

 Example 2:

thin slices expansion

Diagnose bug:

Which statements cause the

‘this’ pointers of close() and

isOpen() to be aliased

Bug

Error

Exception

Computing thin slices
8

 Step 1: Do precise pointer analysis:

 Compute call graph

 compute may-mod and may-use sets for each method

 Step 2: Build a CFG for each method in the program

 Step 3: Compute each CFG’s control and data dependences

 Step 4: Build PDG for each CFG

 Step 5: Connect the PDGs to form the SDG:

 Context-Insensitive/Context-sensitive : Add direct edges for heap

access statements

Reference: “Slicing Java Programs that Throw and Catch Exceptions”

Computing thin slices – Modification
9

 Data dependences for heap access statements

For a statement x.f := e, we add an edge to each statement with
an expression w.f on its right-hand side, such that the
precomputed points-to analysis indicates x may-alias w.

 Context-Insensitive Thin Slicing

 Add direct edges across procedure

 Do not use heap parameters

 Context-sensitive Thin Slicing

 Add direct edges in the same procedure

 Use extra parameters and return values to model heap
access

Evaluation
10

 Experimental Setup

 Implemented thin slicing (context-insensitive/ context-

sensitive)& traditional slicing (context-insensitive / context-

sensitive) using WALA

 Used SUN JDK 1.4.2_09 standard library code

 Machine: A Lenovo ThinkPad t60p with dual 2.2GHz Intel

T2600 processors and 2GB RAM

 Analyzer: ran on the Sun JDK 1.5_07 using at most 1GB of

heap space.

 Benchmarks: SIR, SPECjvm98

Evaluation (cont’d)
11

Benchmark characteristics: derived from methods discovered

during on-the-fly call graph construction, including Java

library methods

Evaluation (cont’d)
12

 Key points

 uses injected bugs from the SIR suite

 Seed: as the point of failure

 Desired statements: the cause of the bug

 Control dependence: manually pre-determined

 Scalability

 context-insensitive (thin/traditional) :good

 context-sensitive traditional for small codes: good

 context-sensitive traditional for large codes: bad

 Precision

 Traditional: Measuring Slice Size

 New Approach: Use a breadth-first traversal strategy to simulate the statements
inspecting process done by the user, terminated when discover all required
statements for original problem

 context-sensitive thin: not practical

Experiment 1 – Locating bugs
13

 Target

 Check if thin slices include the buggy statement

 Compare inspected slice size (thin / traditional)

aliasing

control

dependence

Experiment 2 – Program understanding
14

 What is a tough cast ?

 Thin Slicing – Understanding the safety of tough cast

Tough Cast

Experiment 2 (cont’d)
15

 Investigate 10 random tough casts for each SPEC benchmark

 Compared BFS traversal sizes to manually identified required statements
size

Threats to validity
16

 Uses injected bugs from the SIR suite

 Use BFS traversal to simulate user process

 Use of whole-program pointer analysis and call

graph construction for the thin slicer may not scale to

larger benchmarks

Conclusions
17

 Thin slices lead the user to desired statements

 Thin slices focus better on desired statements than

traditional slices

 A precise pointer analysis is key to effective thin

slicing

 Thin slices can be computed efficiently:

 context-insensitive thin slicing algorithm scaled well

 to large programs

Questions ?

Thanks!

18

