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Motivation 

 Debugging and Program Understanding tasks 

 Finding buggy statement, diagnose bug (find most relevant 

statements to the bug ) 

 Understanding relevant statements, e.g., aliasing, important 

conditionals 

 

 Drawbacks of traditional static slicing techniques 

 Overly Broad relevance definition 

 Slice Pollution 
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Approach 

 Thin Slicing 

 Redefine relevance – intuitive semantic definition 

 Hierarchical expansion – providing additional 

information 

 

 Terminology 

 Seed statement 

 Producer statement 

 Explainer statement 

 Dependences 
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Definitions – producer statements 
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 Seed statement 

A statement or value of interest, e.g., the position in a program 
where an error occurs 
 

 Producer statement 

 Statement s1 is a producer for statement s2 if s1 is part of 
a chain of assignments that computes and copies a value to 
s2 

 S2 – seed / other producer 

 Direct uses of memory locations (variables & object fields) 
 

 Explainer statement 

None-producer statements:  

 Heap-based value flow 

 Control flow 

 

 

 



Definitions – Dependences 
5 

 Thin slicing 

Producer flow dependences 

Ignore: 
 Base pointer flow dependences 
 Control dependences 
 

 Most Tasks 

Very few explainers are needed 
 

 Answer more questions, need more explanation 

 Expand thin slices, need ignored dependences 

 

 



Examples 
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 Example 1: A dependence graph for a program 

 
Heap-based value flow 
 

Control flow 
 Direct uses of memory locations in the thin 

slicing for the seed 



Examples (cont’d) 
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 Example 2:  

thin slices expansion 

 

Diagnose bug: 

Which statements cause the 

‘this’ pointers of close() and 

isOpen() to be aliased 

 

Bug 

Error 

Exception 



Computing thin slices  
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 Step 1: Do precise pointer analysis:  

 Compute call graph 

 compute may-mod and may-use sets for each method 

 Step 2: Build a CFG for each method in the program 

 Step 3: Compute each CFG’s control and data dependences 

 Step 4: Build PDG for each CFG 

 Step 5: Connect the PDGs to form the SDG:  

 Context-Insensitive/Context-sensitive : Add direct edges for heap 

access statements 

 

Reference: “Slicing Java Programs that Throw and Catch Exceptions” 



Computing thin slices – Modification 
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 Data dependences for heap access statements 

For a statement x.f := e, we add an edge to each statement with 
an expression w.f on its right-hand side, such that the 
precomputed points-to analysis indicates x may-alias w. 
 

 Context-Insensitive Thin Slicing 

 Add direct edges across procedure 

 Do not use heap parameters 
 

 Context-sensitive Thin Slicing 

 Add direct edges in the same procedure 

 Use extra parameters and return values to model heap 
access 

 

 

 



Evaluation 
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 Experimental Setup 

 Implemented thin slicing (context-insensitive/ context-

sensitive )& traditional slicing (context-insensitive / context-

sensitive) using WALA 

 Used SUN JDK 1.4.2_09 standard library code 

 Machine: A Lenovo ThinkPad t60p with dual 2.2GHz Intel 

T2600 processors and 2GB RAM 

 Analyzer: ran on the Sun JDK 1.5_07 using at most 1GB of 

heap space. 

 Benchmarks: SIR, SPECjvm98 

 



Evaluation (cont’d) 
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Benchmark characteristics: derived from methods discovered 

during on-the-fly call graph construction, including Java 

library methods 



Evaluation (cont’d) 
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 Key points 

 uses injected bugs from the SIR suite 

 Seed: as the point of failure 

 Desired statements: the cause of the bug 

 Control dependence: manually pre-determined 
 

 Scalability 

 context-insensitive (thin/traditional) :good  

 context-sensitive traditional for small codes: good 

 context-sensitive traditional for large codes: bad 
 

 Precision 

  Traditional: Measuring Slice Size 

 New Approach: Use a breadth-first traversal strategy to simulate the statements 
inspecting process done by the user, terminated when discover all required 
statements for original problem 

 context-sensitive thin: not practical 

 
 

 



Experiment 1 – Locating bugs 
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 Target 

 Check if thin slices include the buggy statement 

 Compare inspected slice size (thin / traditional) 

 

aliasing 

control  

dependence 



Experiment 2 – Program understanding 
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 What is a tough cast ? 

 Thin Slicing – Understanding the safety of tough cast 

Tough Cast 



Experiment 2 (cont’d) 
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 Investigate 10 random tough casts for each SPEC benchmark 

 Compared BFS traversal sizes to manually identified required statements 
size 

 



Threats to validity 
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 Uses injected bugs from the SIR suite 

 Use BFS traversal to simulate user process 

 Use of whole-program pointer analysis and call 

graph construction for the thin slicer may not scale to 

larger benchmarks 



Conclusions 
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 Thin slices lead the user to desired statements 

 Thin slices focus better on desired statements than 

traditional slices 

 A precise pointer analysis is key to effective thin 

slicing 

 Thin slices can be computed efficiently: 

    context-insensitive thin slicing algorithm scaled well  

    to large programs 



Questions ? 
 

 

Thanks! 
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