
Program Slicing
Author: Mark Weiser

Published in TSE, 1984

Presented by Peeratham (Karn) Techapalokul
10/13/2015

About Mark Weiser

• a chief scientist
at Xerox PARC

• Widely considered to
be the father
of ubiquitous
computing

“My research interests are garbage collection, operating

systems, user interfaces, and ubiquitous computing. I

used to work on software engineering and program

slicing, but not much any more.” –Weiser

https://en.wikipedia.org/wiki/PARC_(company)
https://en.wikipedia.org/wiki/Ubiquitous_computing
http://www.ubiq.com/hypertext/weiser/UbiHome.html

Outline

• Definitions

• Finding slice (manually)

• Applications of Program slicing

• Finding slice using data flow analysis (Intraprocedural
slicing)

• Interprocedural slicing

• Testing the slicer on student compiler programs

What is Program Slicing?

• A program slice S is a reduced, executable program
obtained from a program P by removing
statements, such that the program slice S replicates
part of the behavior of program P .

• Program slicing is the computation of a set of
program statements (the program slice) that can
possibly affects the values at some points of
interest (slicing criterion)

Applications of program slicing:

• Debugging

• Parallelization

• Software maintenance

• Testing

• Reverse engineering

• Compiler tuning

• Security

Finding Slices

Slicing criterion C = < statement, variables >

< 10 , {product}>

(1) read (n);
(2) i := 1;
(3) sum := 0;
(4) product := 1;
(5) while i <= n do

begin
(6) sum := sum + i;
(7) product := product * i;
(8) i := i + 1

end;
(9) write(sum);
(10) write(product)

Slice on criterion < 10 , {product}>

Finding Slices

read (n);
i := 1;
product := 1;
while i <= n do
begin

product := product * i;
i := i + 1

end;
write(product)

(1) read (n);
(2) i := 1;
(3) sum := 0;
(4) product := 1;
(5) while i <= n do

begin
(6) sum := sum + i;
(7) product := product *
i;
(8) i := i + 1

end;
(9) write(sum);
(10) write(product)

CFG of the example program

Overview: finding program slices

Two types of iteration:

1. Tracing transitive data dependences

• determine directly relevant variables 𝑹𝑪
𝟎

• derive 𝑺𝑪
𝟎 from 𝑹𝑪

𝟎

2. Tracing control dependences
(dealing with branch statement)
• INFL (b) : set of statements control

dependent on b

Tracing transitive data dependences (1)

1. Determine directly relevant variables 𝑹𝑪
𝟎 𝒊 at each

node i in the CFG
• starts with initial values 𝑅𝐶

0 𝑛 = V, 𝑅𝐶
0 𝑚 = ∅ for any

node m≠n

• requires iteration in the presence of loop

Node
#

Def Ref INFL 𝑹𝑪
𝟎 In 𝑺𝑪

𝟎 In 𝑩𝑪
𝟎 𝑹𝑪

𝟏 In 𝑺𝑪
𝟏

1 {n} {} {}

2 {i} {} {} /

3 {sum} {} {i}

4 {product} {} {i} /

5 {} {i, n} {product,i}

6 {sum} {sum, i} {product,i}

7 {product} {product, i} {product,i} /

8 {i} {i} {product} /

9 {} {sum} {product}

10 {} {product} {product}

< 10 , {product}>

Tracing transitive data dependences (2)

2. A set of directly relevant statements, 𝑺𝑪
𝟎 , is

derived from 𝑹𝑪
𝟎 at each node i in the CFG

Node
#

Def Ref INFL 𝑹𝑪
𝟎 In 𝑺𝑪

𝟎 In 𝑩𝑪
𝟎 𝑹𝑪

𝟏 In 𝑺𝑪
𝟏

1 {n} {} {}

2 {i} {} {}

3 {sum} {} {i}

4 {product} {} {i}

5 {} {i, n} {product, i}

6 {sum} {sum, i} {product, i}

7 {product} {product, i} {product, i}

8 {i} {i} {product, i}

9 {} {sum} {product}

10 {} {product} {product}

< 10 , {product}>

Tracing control dependences
(dealing with branch statement)

• INFL(b) is set of statements that is control
dependent on branch statement b

• branching statement b is indirectly relevant to the
slice if there is at least one directly relevant
statement under its range of influence

Node
#

Def Ref INFL 𝑹𝑪
𝟎 In 𝑺𝑪

𝟎 In 𝑩𝑪
𝟎 𝑹𝑪

𝟏 In 𝑺𝑪
𝟏

1 {n} {} {}

2 {i} {} {} /

3 {sum} {} {i}

4 {product} {} {i} /

5 {} {i, n} {6,7,8} {product, i} /

6 {sum} {sum, i} {product, i}

7 {product} {product, i} {product, i} /

8 {i} {i} {product, i} /

9 {} {sum} {product}

10 {} {product} {product}

< 10 , {product}>

Tracing control dependences (cont’d)
(dealing with branch statement)

• Trace relevant variables and statements with direct
influence on 𝑩𝑪

𝟎

• The sets 𝑹𝑪
𝒌 and 𝑺𝑪

𝒌 are nondecreasing subsets of the
program’s variables and statements respectively

• The fixpoint of the computation of the 𝑺𝑪
𝒌 sets => the

desired program slice.

Node
#

Def Ref INFL 𝑹𝑪
𝟎 In 𝑺𝑪

𝟎 In 𝑩𝑪
𝟎 𝑹𝑪

𝟏 In 𝑺𝑪
𝟏

1 {n} {} {} {} {} /

2 {i} {} {} {} / {n} /

3 {sum} {} {} {i} {i,n}

4 {product} {} {} {i} / {i, n} /

5 {} {i, n} {6,7,8} {product, i} / {product, i, n} /

6 {sum} {sum, i} {} {product, i} {product, i,n}

7 {product} {product, i} {} {product, i} / {product, i,n} /

8 {i} {i} {} {product, i} / {product, i,n} /

9 {} {sum} {} {product} {product}

10 {} {product} {} {product} {product}

< 10 , {product}>

Node
#

Def Ref INFL 𝑹𝑪
𝟎 In

𝑺𝑪
𝟎

In

𝑩𝑪
𝟎

𝑹𝑪
𝟏 In 𝑺𝑪

𝟏

1 {n} ∅ ∅ ∅ ∅ /

2 {i} ∅ ∅ ∅ / {n} /

3 {sum} ∅ ∅ {i} {i, n}

4 {product} ∅ ∅ {i} / {i, n} /

5 ∅ {i, n} {6,7,8} {product, i} / {product, i, n} /

6 {sum} {sum, i} ∅ {product, i} {product, i, n}

7 {product} {product, i} ∅ {product, i} / {product, i, n} /

8 {i} {i} ∅ {product, i} / {product, i, n} /

9 ∅ {sum} ∅ {product} {product}

10 ∅ {product} ∅ {product} {product}

(1) read (n);
(2) i := 1;
(3) sum := 0;
(4) product := 1;
(5) while i <= n do

begin
(6) sum := sum + i;
(7) product := product * i;
(8) i := i + 1

end;
(9) write(sum);
(10) write(product)

Interprocedural Slicing

• Compute interprocedural summary information for
each procedure P
• MOD(P) = variables that may be modified by P

• USE(P) = variables that may be used by P

• Generation of new slicing criteria
Translate relevant variables RC into the scope of new
procedure

P is sliced, P calls Q
generates : <last statement of Q, relevant vars in P in the scope of Q >

Q is sliced, Q is called by P
generates : <first statement in P, relevant vars in Q in the scope of P>

Interprocedural Slicing (cont’d)

• UP maps set C of slicing criteria in a procedure P to a set of
criteria in procedures that call P

• DOWN maps set C of slicing criteria in a procedure P to a set
of criteria in procedures called by P

• The complete interprocedural slice for a criterion C = union of
the intraprocedural slices for each criterion in
(UP ∪ DOWN)*({ C })

• Interprocedurally imprecise because it does not model calling
contexts

A Sampling of Slices

• Test the program slicer on 19 student compilers
(500 – 900 executable statements long; 20 – 80
subroutines)

• The compilers were sliced at each write statement i
and a set of output variables V

• Slices differed by less than 30 statements were
merged into a new slightly large slice

Statistics on slices

Length of contiguous
statements in a cluster
which were contiguous in
original program = 11.78

Low uniqueness of slices
reflects high degree of
interrelatedness of
compiler programs

References:

• Weiser, Mark. "Program slicing." Proceedings of the 5th international
conference on Software engineering. IEEE Press, 1981.

• http://pubweb.parc.xerox.com/weiser/weiser.html

• Tip, Frank. "A survey of program slicing techniques." Journal of
programming languages 3.3 (1995): 121-189.

• Mary Jean Harrold’s slides, Software Analysis and Testing course:
Program Slicing, http://www.cc.gatech.edu/~harrold/6340/cs6340_fall2009/Slides/BasicAnalysis6.pdf

http://www.cc.gatech.edu/~harrold/6340/cs6340_fall2009/Slides/BasicAnalysis6.pdf

