Program Slicing

Author: Mark Weiser
Published in TSE, 1984

Presented by Peeratham (Karn) Techapalokul
10/13/2015

About Mark Weiser

PUPLICATION S

* a chief scientist =Tl
at Xe Frox PARC SOFTVARE

* Widely considered to
be the father
of ubiquitous
computing

“My research interests are garbage collection, operating
systems, user interfaces, and ubiquitous computing. |
used to work on software engineering and program
slicing, but not much any more.” —~Weiser

https://en.wikipedia.org/wiki/PARC_(company)
https://en.wikipedia.org/wiki/Ubiquitous_computing
http://www.ubiq.com/hypertext/weiser/UbiHome.html

Outline

* Definitions
* Finding slice (manually)
* Applications of Program slicing

* Finding slice using data flow analysis (Intraprocedural
slicing)

* Interprocedural slicing
* Testing the slicer on student compiler programs

What is Program Slicing?

* A program slice S is a reduced, executable program
obtained from a program P by removing
statements, such that the program slice S replicates
part of the behavior of program P .

* Program slicing is the computation of a set of
program statements (the program slice) that can
possibly affects the values at some points of
interest (slicing criterion)

Applications of program slicing:

* Debugging

* Parallelization

e Software maintenance
* Testing

* Reverse engineering

* Compiler tuning

* Security

Finding Slices

(1) read (n);
(2) i:=1; . . .]
(3) sum := 0; Slicing criterion C = < statement, variables >
(4) product :=1;
(5) whilei<=ndo <10, {product}>
begin
(6) sum :=sum + i;
(7) product := product * i;
(8) i:=i+1
end;
(9) write(sum);
(10) write(product)

Finding Slices

Slice on criterion < 10, {product}>
(1) read (n);

(2) i:=1; read (n);

(3) sum=0; i:=1;

(4) product:=1; product := 1;

(5) whilei<=ndo whilei <=n do
begin begin

(6) sUM-=sum—+i; — product := product * i;

(7) product := product * i:=i+1

i; end;

(8) i=i+1 write(product)
end;

(9) write{sum);

(10) write(product)

CFG of the example program

Figure 3: CFG of the example program of Figure 1 (a).

Overview: finding program slices

Two types of iteration:

1. Tracing transitive data dependences
* determine directly relevant variables Rp

* derive SP from Rp

2. Tracing control dependences

(dealing with branch statement)
* INFL (b) : set of statements control
dependentonb

1 READ (X)
2 IFX<1

3 THEN Z := |
4 ELSE Z :=2

5 WRITE (2).

Tracing transitive data dependences (1)

1. Determine directly relevant variables R (i) at each
node i in the CFG

e starts with initial values Rg(n) =V, R2(m) =@ for any
node m#n

RL(i) = RA(i) U {v|ve RL(F), v ¢ DEF(:) }
U {v|v €REF(i), DEF(i) N RY(j) # 0 }

e requires iteration in the presence of loop

<10, {product}>

1

2 {i} {} {} /
3 {sum} {} {i}

4 {product} {} {i} /
5 {} {i, n} {product,i}

6 {sum} {sum, i} {product,i}

7 {product} {product, i} {product,i} /
8 {i} {i} {product} /
9 {} {sum} {product}

10 {} {product} {product}

Tracing transitive data dependences (2)

2. A set of directly relevant statements, S 0 s
derived from R at each node i in the CFG

Sé = {i | (DEF(i) N R&(7)) # 0, —=CFG 7}

<10, {product}>

1

2 {i} {} {}

3 {sum} {} {i}

4 {product} {} {i}

5 {} {i, n} {product, i}
6 {sum} {sum, i} {product, i}
7 {product} {product, i} {product, i}
8 {i} {i} {product, i}
9 {} {sum} {product}
10 {} {product} {product}

Tracing control dependences
(dealing with branch statement)

* INFL(b) is set of statements that is control
dependent on branch statement b

* branching statement b is indirectly relevant to the
slice if there is at least one directly relevant
statement under its range of influence

BE, = {b|3i € S§, i € INFL(b)}

<10, {product}>

1

2 {i} {} {} /

3 {sum} {} {i}

4 {product} {3 {i} /

5 {} {i, n} {6,7,8} {product, i} /
6 {sum} {sum, i} {product, i}

7 {product} {product, i} {product, i} /

8 {i} {i} {product, i} /

9 {} {sum} {product}

10 {} {product} {product}

Tracing control dependences (cont’d)
(dealing with branch statement)

* Trace relevant variables and statements with direct
influence on B

R’(€3'+1(i) — RI&'(Z) U Ube}:}’fgj R(()b,REF(b))(i)
St = BE U {i | DEF(i) N RET(5) # 0,0 —cFG J)

* The sets RE and S¥ are nondecreasing subsets of the
program’s variables and statements respectively

* The fixpoint of the computation of the S’é sets => the
desired program slice.

<10, {product}>

1

2 {i} {} {} {} / {n} /
3 {sum} {} {} {i} {i,n}

4 {product} {} {} {i} / {i, n} /
5 {} {i, n} {6,7,8} {product, i} / {product, i, n} /
6 {sum} {sum, i} {} {product, i} {product, i,n}

7 {product} {product, i} {} {product, i} / {product, i,n} /
8 {i} {i} {} {product, i} / {product, i,n} /
9 {} {sum} {} {product} {product}

10 {} {product} {} {product} {product}

(1) read (n);

(2) i:=1;

(3) sum—+=0;

(4) product :=1;
(5) whilei<=ndo

begin
(6) SR =-StHA—+i5
(7) product := product * i;
(8) i=i+1
end;
(9) weite{sum);
(10) write(product)
Y N
s | B
1 {n} 1) 1) 1) @ /
2 {i} 1) 1) 1) / {n} /
3 {sum} ? ? {i} {i, n}
4 {product} @ @ {i} / {i, n} /
5 1) {i, n} {6,7,8} {product, i} / {product, i, n}
6 {sum} {sum, i})} {product, i} {product, i, n}
7 {product} {product, i}) {product, i} / {product, i, n}
8 {i} {i}) {product, i} / {product, i, n} /
9) {sum}) {product} {product}
10 1) {product} 1) {product} {product}

Interprocedural Slicing

 Compute interprocedural summary information for
each procedure P
« MOD(P) = variables that may be modified by P
e USE(P) = variables that may be used by P

* Generation of new slicing criteria
Translate relevant variables R, into the scope of new
procedure

1 READ(A,B)

2 CALL Q(A,B)
3 L i= A + B
PROCEDURE Q(VAR X,Y : INTEGER)
Y X := 0
5 Y := X + 3
6 RETURN

DOWN(<3,{Z}>) = {qﬁ!{xlr}}}

UP(<Y,{Y}> = {<2,{B}>]
Fig. 4. Extending slices to called and calling routines.

P is sliced, P calls Q
generates : <last statement of Q, relevant vars in P in the scope of Q >

Qs sliced, Qis called by P
generates : <first statement in P, relevant vars in Q in the scope of P>

Interprocedural Slicing (cont’d)

* UP maps set C of slicing criteria in a procedure P to a set of
criteria in procedures that call P

* DOWN maps set C of slicing criteria in a procedure P to a set
of criteria in procedures called by P

* The complete interprocedural slice for a criterion C = union of
the intraprocedural slices for each criterion in
(UP U DOWN)*({C})

* Interprocedurally imprecise because it does not model calling
contexts

A Sampling of Slices

* Test the program slicer on 19 student compilers
(500 — 900 executable statements long; 20 — 80
subroutines)

* The compilers were sliced at each write statement i
and a set of output variables V

* Slices differed by less than 30 statements were
merged into a new slightly large slice

Statistics on slices

TABLE 1
STATISTICS ON SLICES

Length of contiguous
statements in a cluster
which were contiguous in

Measure Mean Median Min Max

Per program measures N = 19

Useless 9.16 6 1 23 original program =11.78

Common 14.32 0 0 86

Slices 37.26 32 7 74

Clusters 9.74 ! 3 23 Low uniqueness of slices
Per cluster measures N = 185 reflects high degree of

Contig 1178 9.10 0 65.4 interrelatedness of

% Size 44 40 0 97 i

% Unique 6 1 0 100 compiler programs

% Overlap 52 51 0 93

References:

* Weiser, Mark. "Program slicing." Proceedings of the 5th international
conference on Software engineering. |IEEE Press, 1981.

* http://pubweb.parc.xerox.com/weiser/weiser.html

* Tip, Frank. "A survey of program slicing techniques." Journal of
programming languages 3.3 (1995): 121-189.

 Mary Jean Harrold’s slides, Software Analysis and Testing course:
Program Slicing, http://www.cc.gatech.edu/~harrold/6340/cs6340 fall2009/Slides/BasicAnalysis6.pdf

http://www.cc.gatech.edu/~harrold/6340/cs6340_fall2009/Slides/BasicAnalysis6.pdf

