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What When How
Main 
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In general, SQLIAs are a class of code injection attacks

that take advantage of the lack of validation of user input.
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These attacks occur when developers combine hard-coded

strings with user-provided input to create dynamic queries.
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If user input is not properly validated, attackers may be able to 

change the developer’s intended SQL command by inserting new 

SQL keywords or operators through specially crafted input strings. 
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Example:
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• Tautologies

• Union Queries

• Piggybacked Queries



Approach

• Positive tainting

• Syntax-aware evaluation



Taint checking 

• A feature in some computer programming languages, 

designed to increase security by preventing malicious 

users from executing commands on a host computer. 

• The concept behind taint checking is that any variable 

that can be modified by an outside user poses a 

potential security risk.



Positive tainting

• It is based on the identification, marking, 

and tracking of trusted, rather than 

untrusted, data.

Differences



Positive tainting Differences



Syntax-aware evaluation

• It considers the context in which trusted and 

untrusted data is used to make sure that all 

parts of a query other than string or numeric 

literals consist only of trusted characters. 

• As long as untrusted data is confined to 

literals, no SQLIA can be performed. 



Syntax-aware evaluation

• Example:

Reference: William Halfond’s slides



Syntax-aware evaluation

• Example:

Reference: William Halfond’s slides
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Evaluation

• RQ1. What percentage of attacks can WASP detect

and prevent that would otherwise go undetected

and reach the database?

• RQ2. What percentage of legitimate accesses are

incorrectly identified by WASP as attacks?

• RQ3. What is the runtime overhead imposed by

WASP on the Web applications that it protects?
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Evaluation

• RQ2. What percentage of legitimate accesses are incorrectly 

identified by WASP as attacks?



Evaluation

• RQ3. What is the runtime overhead imposed by WASP on the 

Web applications that it protects?



Conclusion

• WASP: Highly automated technique for securing

applications against SQL Injection Attacks
• Positive tainting

• Accurate and efficient taint propagation

• Syntax-aware evaluation

• Minimal deployment requirements

• Future work
• Use static analysis to optimize dynamic instrumentation

• Apply general principle to other forms of attacks



Questions


