
WASP: Protecting Web Applications Using
Positive Tainting and Syntax-Aware Evaluation

Presented by Dong Chen

William G.J. Halfond, Alessandro Orso, Panagiotis Manolios

Published in TSE, 2008



Outline

Motivation

Approach

Implementation

Evaluation

Conclusion



Motivation

SQLIA



What When How
Main 

variants

SQLIA

In general, SQLIAs are a class of code injection attacks

that take advantage of the lack of validation of user input.



What When How
Main 

variants

SQLIA

These attacks occur when developers combine hard-coded

strings with user-provided input to create dynamic queries.



What When How
Main 

variants

SQLIA

If user input is not properly validated, attackers may be able to 

change the developer’s intended SQL command by inserting new 

SQL keywords or operators through specially crafted input strings. 



What When How
Main 

variants

SQLIA

Example:



What When How
Main 

variants

SQLIA

• Tautologies

• Union Queries

• Piggybacked Queries



Approach

• Positive tainting

• Syntax-aware evaluation



Taint checking 

• A feature in some computer programming languages, 

designed to increase security by preventing malicious 

users from executing commands on a host computer. 

• The concept behind taint checking is that any variable 

that can be modified by an outside user poses a 

potential security risk.



Positive tainting

• It is based on the identification, marking, 

and tracking of trusted, rather than 

untrusted, data.

Differences



Positive tainting Differences



Syntax-aware evaluation

• It considers the context in which trusted and 

untrusted data is used to make sure that all 

parts of a query other than string or numeric 

literals consist only of trusted characters. 

• As long as untrusted data is confined to 

literals, no SQLIA can be performed. 



Syntax-aware evaluation

• Example:

Reference: William Halfond’s slides



Syntax-aware evaluation

• Example:

Reference: William Halfond’s slides



Implementation

Syntax-aware 

evaluation

Positive 

tainting



Evaluation

• RQ1. What percentage of attacks can WASP detect

and prevent that would otherwise go undetected

and reach the database?

• RQ2. What percentage of legitimate accesses are

incorrectly identified by WASP as attacks?

• RQ3. What is the runtime overhead imposed by

WASP on the Web applications that it protects?



Evaluation

• RQ1. What percentage of attacks can WASP detect and prevent 

that would otherwise go undetected and reach the database?



Evaluation

• RQ2. What percentage of legitimate accesses are incorrectly 

identified by WASP as attacks?



Evaluation

• RQ3. What is the runtime overhead imposed by WASP on the 

Web applications that it protects?



Conclusion

• WASP: Highly automated technique for securing

applications against SQL Injection Attacks
• Positive tainting

• Accurate and efficient taint propagation

• Syntax-aware evaluation

• Minimal deployment requirements

• Future work
• Use static analysis to optimize dynamic instrumentation

• Apply general principle to other forms of attacks



Questions


