WASP: Protecting Web Applications Using
Positive Tainting and Syntax-Aware Evaluation

Williom G.J. Halfond, Alessandro Orso, Panagiotis Manolios

Published in TSE, 2008

Presented by Dong Chen

Outline

» \otivation

®» Approach

®» | mplementation
»Fvaluation

®» Conclusion

Motivation

SQLIA
IDTDTDTED

In general, SQLIAs are a class of code injection attacks
that take advantage of the lack of validation of user input.

SQLIA
I IHIDED

These attacks occur when developers combine hard-coded
strings with user-provided input to create dynamic queries.

SQLIA
IDTDIDED

If user input is not properly validated, attackers may be able to
change the developer’s infended SQL command by inserting new
SQL keywords or operators through specially crafted input strings.

Main
variants

String login = getParameter ("login");

Example:

String pin = getParameter ("pin");

Statement stmt = connection.createStatement ();

String query = "SELECT acct FROM users WHERE login='";
query += login + "’ AND pin=" + pin;

login -
[123]

ResultSet result = stmt.executeQuery(query);
if (result != null)
displayAccount (result); // Show account

pin
|

else
0. sendAuthFailed(); // Authentication failed

H O 0o ~Jo b Ww N

Fig. 2. Excerpt of a Java servlet implementation.

|SELECT acct FROM users WHERE login='doe’ AND pin=123|

|SELECT acct FROM users WHERE login=’admin’ —-- ’ AND pin=0|

SQLIA

Main
variants

« Tautologies

 Union Queries

* Piggybacked Queries

Approach

 Positive tainting
« Syntax-aware evaluation

Taint checking

« A feature in some computer programming languages,
designed to increase security by preventing malicious
users from executing commands on a host computer.

« The concept behind taint checking is that any variable
that can be modified by an outside user poses a
potential security risk.

Positive tainting

* It is based on the identification, marking,
and fracking of trusted, rather than
unfrusted, data.

Posifive tainting

Positive tainting

Trusted

data Successful attacks

(false negatives)

Blocked
attacks

Unidentified
untrusted data

Unidentified
trusted data

Blocked
attacks

False alarms

(false positives) Untrusted

data

Negative tainting

Fig. 3. Identification of trusted and untrusted data.

Syntax-aware evaluation

|t considers the context in which frusted and
untrusted data is used to make sure that all
parts of a query other than string or numeric
literals consist only of trusted characters.

* Aslong as untfrusted data is confined to
literals, no SQLIA can be performed.

Syntax-aware evaluation

« Example:

1 String queryString = "SELECT info FROM userTable WHERE ";
2. if ((' Iogm equals("")) && (! password.equals(™))) {

ing += "login=""+ login + " AND pass=""+ password + "";

4. queryString+="login='guest™;
}

5. ResultSet tempSet = stmt.executeQuery(queryString);

login -> "doe"”, password -> "xyz"

queryString
- [WIH]EIRIEII[N[e](g][il(n][=]1C"][d][e][e]['IAINIIDIp]Ilalls]ls][=1C[x]ly][z][]

Reference: William Halfond's slides

Syntax-aware evaluation

« Example:

1. String queryString = "SELECT info FROM userTable WHERE ",

2. if ((! login.equals(™)) && (! password.equals("))) {

3. queryString += "login=" + login + " AND pass=" + password + "";
} else {

4. queryString+="login="guest";

}
5. ResultSet tempSet = stmt.executeQuery(queryString);

login -> "admin’ -- “, password -> "*

queryString
- [RIEII[N[e)lg]i]n](=10 Jal(d][m]Li]n]"ILIC- J0- JLICILATINIIDINPI]ls](s](=1C" 1]

Reference: William Halfond's slides

Implementation

Syntax-aware

Developer I

- | :
| Additional Trust
| A Tt | evaluation
et _g_ _ WASP
| - String
| Additional Checker
| Trusted Sources !
and Markings | < '

String Initializer Protected || egitimate Query
Application and) Web Database
Instrumenter Application

Data
URL'IHTML

Positive
’rc:in’ring Users

Fig. 4. High-level overview of the approach and tool.

Evaluation

RQ1. What percentage of attacks can WASP detect
and prevent that would otherwise go undetected
and reach the database?

RQ2. What percentage of legitimate accesses are
incorrectly identified by WASP as attacks?

RQ3. What is the runtime overhead imposed by
WASP on the Web applications that it protects?

Evaluation

 RQ1. What percentage of attacks can WASP detect and prevent
that would otherwise go undetected and reach the database?

TABLE 2
Results of Testing for False Negatives (RQ1)

Successful Attacks
Subject Total # Original WASP Protected
Attacks | Web Apps Web Apps
Checkers 4431 922 0
Office Talk 5,888 499 0
Empl. Dir. 6,398 2,066 0
Bookstore 6,154 1,999 0
Events 6,207 2,141 0}
Classifieds 5,968 1,973 0}
Portal 6,403 3,016 0
Daffodil 19 19 0
Filelister 96 80 0
WebGoat 96 88 0

Evaluation

« RQ2. What percentage of legitimate accesses are incorrectly
identified by WASP as attacks?

TABLE 3
Results of Testing for False Positives (RQ2)
Subject # Legitimate Accesses | False Positives
Checkers 1,359 0
Office Talk 424 0
Empl. Dir. 1,244 0
Bookstore 3,239 0
Events 1,324 0
Classifieds 2042 0
Portal 3,435 0
Daffodil 19 0
Filelister 40 0
WebGoat 40 0

Evaluation

 RQ3. What is the runtime overhead imposed by WASP on the
Web applications that it protects?

TABLE 4
Overhead Measurements for the Macro Benchmarks (RQ3) T ———
Subject # Inputs Avg Time Avg Ovhd | % Ovhd Algzg
Uninst (ms) (ms) g 800
Checkers 1,359 122 S 5% g 700
Office Talk | 424 56 1 2% 8 o0
Empl. Dir. 658 63 3 5% : jgg
Bookstore 607 70 4 6% & 6
Events 900 70 1 1% § 200
Classifieds 574 70 3 5% < 100
Portal 1,080 83 16 19% 0 .) . Y Y . < . N
Daffodil 19 90 6 6% af & & f F &8ss
Filelister 40 172 1 1% 6.3' ég" «:és Q°° < e‘é’ Q & $" JPq'?
WebGoat 40 940 40 5%

Runtime overhead imposed by WASP’s instrumentation on the subject Web applications.

Conclusion

WASP: Highly automated technique for securing
applications against SQL Injection Attacks

* Positive tainting

* Accurate and efficient taint propagation

e Syntax-aware evaluation

* Minimal deployment requirements

Future work

* Use static analysis to optimize dynamic instrumentation
* Apply general principle to other forms of attacks

Questions

