
Lecture 4 – Class Hierarchy Analysis

•  A type-based reference analysis used for
inexpensive call graph construction

•  Requires whole program, that is all class
definitions with all of their defined methods

•  Is useful even if the call can not be resolved to a direct call
– can use a “type-case” expression to resolve at runtime

•  Requires static types & inheritance structure
•  Ecoop 1995 paper concerned mainly with

efficiency of run-time resolution of virtual calls

Class Hierarchy Analysis
•  Idea: look at class hierarchy to determine what

classes of object can be pointed to by a
reference declared to be of class A,

•  in Java this is the subtree in the inheritance hierarchy
rooted at A, cone (A)

 and find out what methods may be called at a
virtual call site
–  Makes assumption that entire inheritance hierarchy is

available
•  Depending on its shape, might transform a virtual call into a

direct call because there is only 1 choice of (matching)
function

–  Ignores flow of control in program
–  Just using declared type information
–  Might be able to resolve call

Example

static void main(){!
!B b1 = new B();!
!A a1 = new A();!
!f(b1);!
!g(b1);!

}!
static void f(A a2){!
!a2.foo();!

}!
static void g(B b2){!
!B b3 = b2;!
!b3 = new C();!
!b3.foo();!

}!
!

class A {!
!foo(){..}!

}!
class B extends A{!
!foo() {…}!

}!
class C extends B{!
!foo() {…}!

}!
class D extends B{!
!foo(){…}!

}!

cf	 Frank	 Tip,	 OOPSLA’00	

A	

B	

C	 	 	 	 	 	 	 	 	 D	

Run-time call graph

Using CHA

•  Use declared type of receiver, consult
hierarchy for possible concrete receiver
types

•  For each concrete type of the receiver, find
the local (or inherited) matching function

•  If there is only one function, for all the possible concrete
types, then resolve the virtual call to a direct call at
compile time

•  If there are only a few possible concrete types with
different functions, then write a type-based case
statement, querying the type of the concrete receiver,
and executing the corresponding function

•  Otherwise, resolve at runtime.

CHA Example

static void main(){!
!B b1 = new B();!
!A a1 = new A();!
!f(b1);!
!g(b1);!

}!
static void f(A a2){!
!a2.foo();!

}!
!
static void g(B b2){!
!B b3 = b2;!
!b3 = new C();!
!b3.foo();!

}!
!

class A {!
!foo(){..}!

}!
class B extends A{!
!foo() {…}!

}!
class C extends B{!
!foo() {…}!

}!
class D extends B{!
!foo(){…}!

}!

cf	 Frank	 Tip,	 OOPSLA’00	

Cone(Declared_type(receiver))

A	

B	

C	 	 	 	 	 	 	 	 D	

CHA Example - Call Graph
static void main(){!
!B b1 = new B();!
!A a1 = new A();!
!f(b1);!
!g(b1);!

}!
static void f(A a2){!
!a2.foo();!

}!
static void g(B b2){!
!B b3 = b2;!
!b3 = new C();!
!b3.foo();!

}!
!

class A {!
!foo(){..}!

}!
class B extends A{!
!foo() {…}!

}!
class C extends B{!
!foo() {…}!

}!
class D extends B{!
!foo(){…}!

}!

main

A.foo() B.foo() C.foo() D.foo()

f(A) g(B)

Call Graph

Example of a type-case translation

A a = new A()
…
s = a.foo();

A

B

C D

if (a.class() == C){
 s = a.C::foo();}
else if (a.class() == D){
 s = a.D::foo();}
else s = A::foo();

foo

foo

What happens if at runtime the concrete object
referred to by a is NOT of type A,B,C, or D?

foo

Empirical Results

•  Use of CHA (rather than intraprocedural
analyses) to resolve virtual calls in Cecil
resulted in
–  Visible speed improvements
–  Saved between 12-21% of space

•  Code specialization improved performance
better than CHA, but also increased code size

•  Profile-guided prediction did best alone of all
the techniques, but with CHA added, gained
at least 45% in performance

