Lecture 4 - Class Hierarchy Analysis

A type-based reference analysis used for
inexpensive call graph construction

 Requires whole program, that is all class
definitions with all of their defined methods

« Is useful even if the call can not be resolved to a direct call
- can use a "type-case” expression to resolve at runtime

* Requires static types & inheritance structure

* Ecoop 1995 paper concerned mainly with
efficiency of run-time resolution of virtual calls

J. Dean, 6. 6rove, C. Chambers, "Optimization of Object-oriented Programs
Using Static Class Hierarchy Analysis" ECOOP 1995.

Class Hierarchy Analysis

* Idea: look at class hierarchy to determine what
classes of object can be pointed to by a
reference declared to be of class A,

* in Java this is the subtree in the inheritance hierarchy
rooted at A, cone (A)

and find out what methods may be called at a
virtual call site

— Makes assumption that entire inheritance hierarchy is
available

. Dependinﬁ on its shaﬁe, might transform a virtual call into a
]cciir'ec‘r call because there is only 1 choice of (matching)
unction

— Ignores flow of control in program
— Just using declared type information
— Might be able to resolve call

static void main(){
B bl = new B();
A al = new A();

f(bl);

bl);
} g(bl) \ foo() {..}
M}

class C extends B{

static void

a2.foo();

}

static void g(B b2){
B b3 = b2;
b3 = new C();

b3.foo();

Example

cf Frank Tip, OOPSLA’ 00

class A {
foo(){..}

}

class B extends A{

foo() {..}

}

class D extends B{

foo(){..}

Run-time call graph

Using CHA

» Use declared type of receiver, consult
hierarchy for possible concrete receiver
Types

* For each concrete type of the receiver, find

the local (or inherited) matching function

* If there is only one function, for all the possible concrete
types, then resolve the virtual call to a direct call at
compile time

 If there are only a few possible concrete types with
different functions, then write a type-based case
statement, querying the type of the concrete receiver,
and executing the corresponding function

« Otherwise, resolve at runtime.

cf Frank Tip, OOPSLA’ 00

CHA Example

r~~=class A {

static void main(){ /
B bl = new B(); : too(){..}
A al = new A(); I }
| class B extends A{
1
|

f(bl);
g(bl):\
}

static void f(A a2){

2.f s AN !y class C extends B{
a2.foo() NS~ _ 7)
} ST - s - == 3 foo() {1}
S o /
' id b2 A
static vold g(B b2)1 / - class D extends B{
B b3 = b2; K S~ foo() {1
oo () {..
b3 = new C(); _ A
b3.foo(); ~ - }
} _____ -

Cone(Declared_type(receiver))

CHA Example - Call Graph

static void main(){ ¢class A {
B bl = new B(); foo(){..}
A al = new A(); } .
f(bl); class B extends A({ main
g(bl); foo() {..}
} }
static void £(R a2){ 1555 Cc extends B{
a2.foo(); foo e
) e f(A) 9(B)
static void g (B b2){ o
B b3 = b2; class D extends B{ o
b3 = new C(); foo(){..}
b3.foo(); }
}

A.foo() B.foo() C.foo() D.foo()

Call Graph

Example of a type-case translation

A a = new A() if (a.class() == C)
| s = a.C::foo():}
a7 elseif (aclass()z=D) | A
' ' s = a.D::foo();} |
else s = A::ifoo(); B
What happens if at runtime the concrete object c D

referred to by a is NOT of type A,B,C, or D? | |

foo foo

Empirical Results

» Use of CHA (rather than intraprocedural
analyses) to resolve virtual calls in Cecil
resulted in
— Visible speed improvements
— Saved between 12-21% of space

 Code specialization improved performance
better than CHA, but also increased code size

* Profile-guided prediction did best alone of all
the techniques, but with CHA added, gained
at least 45% in performance

