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Lecture 1 - Outline

* Classical Dataflow Analysis

« Control flow graphs, Reaching definitions, Live uses of
variables, Available Expressions

 Dataflow equations (transfer functions)
« References: optimization chapter of compiler textbooks



Compilation Process
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Optimization is a semantics-preserving transformation
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Static (compile-time) Analysis

« Semantic analysis of code to ensure
correctness of machine independent
optimization

 Optimizing Fortran compiler - IBM Backus late 1960's

* Classical dataflow problems defined on
Fortran serve as simple examples of defining
and solving dataflow problems

» Assume knowledge of internal program
representations of code

— Rooted, digraphs: control flow graph (of a
function), call graph (program calling structure)
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sum = 0
do 10 i =1, n

sum = sum + a(i) * a(i) original Fortran

sum = O; initialize loop counter

0 | > ¢
loop test, check for limit
=) °°P

> n goto 15 __
addr (a) - 4

i * 4

t1[t2] _
addr(a) - 4

—

—

£5 = i * 4 ]
t6 = td[t5]
10. t7 = t3 * t6;}>-
11. t8 = sum + t7 EEm)
12. sum t8-
13. 1 =1 +1
14. goto 3
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ali]
ali]
ali] * a[i]

increment sum
increment loop counter



Control Flow Graph (CFG)
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1. sum = 0

2. i=1

3. if i > n goto 15
| F

4. tl = addr(a) - 4

5. t2 =i * 4

6. t3 = tl1[t2]

7. t4 = addr(a) - 4

8. ts =i * 4

9. t6 = t4[t5]

10. t7 = t3 * t6

11. €8 = sum + t7

12. sum = t8

13. 1 =i+ 1

14. goto 3
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Optimized Control Flow Graph (CFG)

Optimizations
enabled by

dataflow analysis 1. sum = 0
extracting info about |2+ 1 =1
reads and writes -
data dependen v T
i ?“\3. if i > n goto 15 15.
| F
4. tl = addr(a) - 4
5. t2 =i * 4
6. t3 = tl1[t2]
7. t4 = addr(a) - 4
8. th =1 * 4
9. t6 = t4[t5]
10. t7 = t3 * t6
11. €8 = sum + t7
12. sum = t8
13. 1 =i+ 1
14. goto 3
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Some Classical Data Flow Problems

 Reaching definitions, Live uses of variables,
Available expressions, used historically for
low-level code optimizations

* Def-use and use-def chains, built from Reach
and Live provide semantic basis for data
dependence analysis

* Available expressions enable common
subexpression elimination



Reaching Definitions

« Definition A statement which may change the
value of a variable

« A definition of a variable x at node k reaches
node n if there is a definition-clear path from

k to n. @



Live Uses of Variables

» Use Appearance of a variable as an operand of
a 3 address statement

e A use of a variable x at node n is /ive on exit
from node kif there is a definition-clear path
for x from k to n.



Def-use Relations

Use-def chain links an use to a definition that
reaches that use — — -

Def-use chain links a definition to an use that
It reaches ___,
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Constant Propagation

— — —» Same constant
different constants
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Reaching Definitions Equations
Reach(j) = U { Reach(m) N pres(m) U dgen(m) }

m € Pred(j)

where:
pres(m) is the set of defs preserved through node m
dgen(m) is the set of defs generated at node m
Pred(j) is the set of immediate predecessors of node j

Reach(m1) Reach(m2)  Reach(m3)

pljolio
@ Reach(j)
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Live Uses Equations

Live(j)= U { Live(m) N pres(m) U ugen(m) }

where ™E Succ(j)

pres(m) is the set of uses preserved through node m

(these will correspond to variables whose defs are
preserved)

ugen(m) is the set of uses generated at node m
succ(j) is the set of immediate successors of node j

Live(j)

Live(m1) Live(m2) Live(m3)



Available Expressions

« An expression X op Y is available at program
point nif EVERY path from program entry to n
evaluates X op Y and after every evaluation
prior to reaching n, there are NO subsequent

assignments to X or V.
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Global Common Subexpressions
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Available Expressions Equations

Avail(j) = N { Avail(m) N epres(m) U egen(m) }

m € Pred(j)
where:

epres(m) is the set of expressions preserved through
node m
egen(m) is the set of (downwards exposed) expressions
generated at node m
pred(j) is the set of immediate predecessors of node j
Avail (m1) Avail (m2) Avail (m3)
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Classical Dataflow Problems

May Problems |Must Problems

Forward Reaching Defs |Available
Problems Exprs
Backward Live Uses of |Very Busy

Problems Variables Expressions
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Dominators and Natural Loops

* A dominator of a node x in a rooted digraph is
a node y such that all paths from the root to
X must pass through y

* A node x can have many dominators. There is
one dominator y such that there are no other
dominators on a path fromy to x. Theny is x's
immediate dominators.

* Dominators and spanning trees can define
natural loops on a rooted digraph.



Loops Example from Aho,Sethi,Ullman
(ASU)

1 How to find the loops
/ | on this graph?
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node 1 dominates node 7
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Example
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Dominator Tree
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Dominator Tree
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Loops

(10,7): {7,8,10}

(7,4): {4,5,6,7,8,10}
(4,3)(8,3): {3,4,5,6,7,8,10}

(9,1):
1{1,2,3,4,5,6,7,8,9,10}



Dominators, asu

« How to find dominators of CFG, G=(N,E,p)? Use
fixed point iteration (justification later)

D(p) = {p}
for ne N-{p} do
{ D(n)=N}
while changes to any D(n) occur do
{ for ne N-{p} do
D(n)={n}u (1 D(p)

} p € pred(n)
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Dominators

* Algorithm terminates since at every step
some set D(k) becomes smaller; this cannot
occur indefinitely, so loop terminates

 Invariant: Node k is parent of node nin the
dominator tree, if node kis the immediate
dominator of n




