
1

Pizza into Java:
Translating theory into

practice

Martin Odersky

Philip Wadler

2

Outline of the talk

• Introduction

• Three features of Pizza and their
implementations

. Parametric polymorphism

. Higher-order functions

. Algebraic data types

• Discussion

. Typing issues

. Rough edges

• Conclusion

3

Introduction

• Pizza and Java

 --- Pizza is a strict superset of
Java

. Why a strict superset?

 --- Three academic ideas:

. Parametric polymorphism

. Higher-order functions

. Algebraic data types

4

Introduction
• Translating Theory into practice

--- Heterogeneous Translation

A specialized copy of code
for each type it is used at.

--- Homogenous Translation

A single copy of code with a
universal representation.

• Status

--- A preliminary design,
including typing rules

--- A pizza compiler in Pizza is
free available on the web.

--- GJ, a more advanced PL to
add generic functions to Java.

5

Parametric polymorphism

• Parametric polymorphism

--- [Strachey 67]Parametric
polymorphism is obtained when
a function works on a range of
types, these types normally
exhibit some common structure.

 --- The uniformity of type
structure is achieved by type
parameters, implicit or explicit.

 --- In addition to functions,
classes and interfaces can also be
parameterized.

6

Parametric Polymorphism
• Why parametric polymorphism?

--- Reuse

--- Compactness

--- Safety

--- Expressiveness

e.g. Interface specification.

• Issues of parametric polymorphism

--- Design problems

. Type checking

. Binding time

--- Legacy problems

7

Parametric Polymorphism
• Forms of Polymorphism

-- Parametric polymorphism: A type
variable X is bound to any type T.

-- Bounded polymorphism: A type
variable X is bound to any subtype
of a particular (parameterized) type
P and X does NOT occur free in P.

-- F- Bounded polymorphism: A type
variable X is bound to any subtype
of a particular parameterized type P,
and X occurs free in P, i.e. P=F(X)
where F is a type functional.

8

Parametric Polymorphism
• Forms of Polymorphism
-- In F-Bounded polymorphism, X is

often bound to a recursive type.

-- The reason why we need F-bounded
polymorphism in addition to
bounded polymorphism is that
bounded polymorphism is not so
flexible under the subtyping rules if
P is a recursive type, and thus we
need a more general bound for X.
P=F(X) is the choice, and we can
regard it as an interface
specification.

(This Slide is added after the talk)

9

Parametric Polymorphism

• Java programmers’ emulation

1) Cut and paste codes,then
specialization

2) Eliminate type parameters,
bind type variables to Object,
cast types when needed, also
add bridges when needed

10

Parametric Polymorphism

• Pizza’s implementation

Parametric polymorphism
(Example 2.1)

--- Heterogenous translation

(Example 2.2)

--- Homogenous translation

(Example 2.3)

11

Parametric Polymorphism

• Pizza’s implementation

Bounded Parametric polymorphism

(Example 2.4)

--- Heterogenous translation

(Example 2.5)

--- Homogenous translation

(Example 2.6)

12

Parametric Polymorphism
• Arrays

--- An array could be regarded as
a parameterised class.

--- Features of Java’s array

. Polymorphism is achieved
through subtyping, i.e. A is a
subtype of B => A[] is a subtype
of B[]. (Unsafe, and run-time
checks are required.)

e.g. Animal[] x; Lamb[]
lamb_flock = new Lamb[100];
x = lamb_flock; x[i] = new Wolf;

13

Parametric Polymorphism
• Arrays (Continued)

--- Features of Pizza’s array

. Polymorphism is achieved
through instantiation instead of
subtyping. E.g. to match
String[] to elem[]. (elem is a
class variable),

. However, in order to be a
super set of Java, the subtyping
relation between arrays in Java
is retained.

. Polymorphic array creation
is probibited.

14

Parametric Polymorphism

• Pizza’s implementation

Parametrised arrays

 (Example 2.7)

--- Homogenous translation

(Example 2.8 and 2.9)

15

Higher-order functions

• First-class functions

--- Call by name (Algol 60)

.So-called “Algol Wall” :
program structure <> object
strcuture

--- Lambda expressions (Lisp)

. Classical Lisp design
violates “orthogonality”

 . Use “function” and “quote”
to pass/return functions

16

Higher-order functions

• First-class functions(Continued)

--- Closure (Scheme)

. A closure C = a “Lambda”
expression L + an environment
E.

. A closure is a time-
capsule,which is different from
dynamic binding.

. Dynamic binding(scoping)
does not need closures.

17

Higher-order functions

• Classes VS closures

Both break the Algol 60 wall.
Which is better?

--- Higher-order functions can
be implemented as objects.

-- Classes naturally lead to
modularity.

--- But sometimes closures are
more convenient.

18

Higher-order Functions

• Pizza’s first-class functions

--- Syntax

func type: (t1,…,tn) -> t0

 [Why not use to(t1,…,tn) as
func type?]

func instance:

fun (t1 x1,…,tn xn)-> t0 s

19

Higher-order Functions

• Pizza’s first-class functions

--- Semantics

• Three sorts of variables

 ---formal parameters P

 ---free variables F

 ---instance variables I

• Conceptually,

--- P (pass by value)

--- I (pass by reference)

--- F (pass by reference, and
may pass by value after
analysis)

20

Higher-order Functions

• Pizza’s first-class functions

--- Semantics

(Example 3.1)

. Heterogenous Translation

(Example 3.2)

. Homogenous Translation

21

Algebraic types
• Algebraic types

--- Constructors

. A constructor produces a
member of the type, we can also
think that a constructor
produces a type, the whole type
being defined is a union of the
constructed types.

22

Algebraic Types

• Algebraic types

--- Pattern match

. A pattern p is either a
variable v,or a constant k, or a
constructor pattern, of the form
(c p1 … pr) where c is a
constructor of arity r, and
p1,…,pr are patterns.

.What is a match? In other
words, what is a pattern-match
lambda abstraction?

23

Algebraic Types

• Pizza’s algebraic types

(Example 4.1)

. Heterogenous Translation

(Example 4.2)

• A integrated example of
polymorphism, higher-order
functions and algebraic types.
(Example 4.3)

24

Discussion

• Typing issues

--- Integrate subtyping and
parametric polymorphism

. Subsumption , Complete
and matching

. Covariance and Contra-
variance

25

Discussion

• Typing issues

--- Integrating dynamic typing

. Dynamic typing: new types
can be defined/created at run-
time. (Related concepts:
dynamically typed and dynamic
type.).

. Type checking existential
types.

26

Discussion

• Rough edges

 --- Casting

--- Visibility

--- Dynamic loading

--- Interfaces for built-in classes

--- Tail calls

--- Arrays

27

Conclusion

A natural translation technique
with only few rough edges has
been exploited by Pizza, a
language with a type--driven
design, to translate three well-
known theoretic features in
functional programming system
to Java, a strict subset of Pizza.
However, the practical effect is
still to wait and see.

