
10/4/99 1

Practical Virtual Method
Call Resolution for Java

Sable TR  1999-2



10/4/99 2

Introduction
• Objective

   To determine at compile time a call graph
with as few nodes and edges as possible

• Background
.Soot Framework and Jimple

• Techniques
. Class Hierarchy Analysis

    .  Rapid Type Analysis

    .  Reaching type Analysis

      --- Variable-type Analysis

      --- Declared-type Analysis

• Comparison



10/4/99 3

Background

• Jimple(stackless) versus Java
Bytecode(stack-based)[ Why
manipulate Jimple instead of Java
Bytecode? ]

Disadvantages of Java bytecode:

1) Expressions are not explicit

2) Expressions can be arbitrary large

3) Concrete expressions can not always be
constructed

4) Simple transformations become
complicated



10/4/99 4

Background
• Example of Jimple

Public int stepPoly(int x)                public int stepPoly(int)

{ if (x <0)                                        { java.io.PrintStream r1;

  {System.out.println(“error”);          Example r0;

     return -1;                                       int i0, i1, i2, i3;

   }                                                      r0 := @this;

  else if (x <=5 )      i0 =@parameter0;

      return x * x;      if i0 >= 0 goto label10;

  else return x * 5 + 16      r1 =java.lang.System.out;

}      r1.println(“error”);

       return -1;

(a)  java source      label 0: if i0 > 5 goto label1;
     i1 = i0 * i0;

    return i1;

     label 1: i3=i0*5;

                      i2 = i3 +16;

    return i2; }

   (b) Jimple representation



10/4/99 5

Background

• Some Notes on Jimple
1) Translated from Java bytecode
instead of high- level Java programs

2) Features:

   . Relatively few kinds of
statements

   . Operands are either typed
variable references or constants

   . Identity statements



10/4/99 6

Class Hierarchy Analysis

• Class Hierarchy Analysis
 --- A standard method for conservatively

estimating the run-time types of receivers .

  --- Definition of hierarchy_types(o,d)

    Given a receiver o of a declared type d,
hierarchy_types(o,d) for Java is defined as
follows:

 . If d is a class type C, 
hierarchy_types(o,d)  includes C plus
all subclasses of C

 . If d is a interface type I, 
hierarchy_types(o,d)  includes: 1) the
set of all classes that implement I or 
implement a sub-interface of I, which
we call implements(I), plus 2) all 
subclasses of implements(I).



10/4/99 7

Class Hierarchy Analysis

• Call Graph

   --- Nodes

       . A node represents a method that can 
be reached starting at any entry point.
(For a single-threaded non-applet 
program, only one entry point: the 
main method.)

    .   A node contains a collection of call 

sites. Consider a method M from class
C with n method calls in its body. M 
is represented by a node labeled C.M,
which contain entries for each call 
site, which we denote C.M[c1] to 
C.M[cn].



10/4/99 8

Class Hierarchy Analysis

• Call Graph
    --- Edges

. Edges go from call sites within a call
graph node, to call graph nodes;

    . Edges represents possible calling 
relationship between call sites and 
nodes

    .  How to add calling edges from a 

virtual method or interface call? ( 
Note the potential runtime types for 
the receiver is a set, call this set 
runtime_types(o))



10/4/99 9

Class Hierarchy Analysis

• An Example
class A extends Object

{ String m(){

return (this. ToString());

 }

}

class B extends A { String m() { … }}

Class C extends A {

  String m() { … }

   public static void main(…)

                   { A a = new A();

   B b = new B();

   String s;

   …

   s = a.m();

   s = b.m();  }

           }

(a) Example Program



10/4/99 10

Class Hierarchy Analysis

Object

toString()

A

B C

 m()

m() m()
main()

C.main
A.m()  b.m()

C.m

Object..toString

B.mA.m
This.toString()

a) Class
Hierarchy

b) Call Graph

• An Example(Continued)



10/4/99 11

Class Hierarchy Analysis

• Building the Conservative Call
Graph

--- Using hierarchy_types as the
estimate for runtime_types for
determining the edges from virtual
method call sites

--- Worklist strategy

Starting with nodes for all
possible entry points(e.g. main, start,
run). As each node (method) is added
to the call graph, edges from the call
sites in the node are also added. If the
target of an edge is not already in the
call graph, then it is added to the call
graph and to the worklist.



10/4/99 12

Class Hierarchy Analysis

• Could we do better?
Objective

To determine at compile time a call graph with as few nodes
and edges as possible

Observation
1) Spurious types may lead to spurious edges

 2) Spurious nodes are included when all incoming edges to
the node are spurious

Principle for Solutions
To provide better approximations of the runtime types of

receivers. (One old and two new solutions are
given later … )

Measurement
    To concentrate on the number of call edges instead of the

accuracy of the receiver type resolution.



10/4/99 13

Rapid Type Analysis

• Observation

A receiver can only have a type of an object
that has been instantiated via a new.

• Solution

--- Collect the set of object types
instantiated in the program P, call this
instantiated_types(P).

--- Given a receiver o with declared type C
with respect to program P, define
rapid_types(C,P) =
hierarchy_types(o, C)      and
Instantiated_types(P)

---- Use rapid_types to estimate
runtime_types



10/4/99 14

Rapid-type Analysis

• Coarse Reaching Type Analysis

A type A reaches a receiver o if
there is an instantiation of an object
of A(i.e. new A()) anywhere in the
program, and A is a plausible type
for o using hierarchy analysis.

• We can have fine-grain Reaching
Type Analysis ...



10/4/99 15

Reaching-type Analysis

• Observation

Assuming no alias relation
between variables, for a type A
to reach a receiver o, there  must
be some execution path through
the program which starts with a
call of a constructor of the form
v=new A() followed by some
chain of assignments of the form
x1=v,x2=x1,…xn-1=xn,o=xn



10/4/99 16

Reaching-type Analysis

• Framework
1) Building a type propagation graph

2) Initializing the graph with type information
generated by new() statements

3) Propagating type information along directed
edges

• Terminology
1) Representative(o): each receiver o is 

associated with some node in the type
propagation graph, called representative(o)

2) Reaching_types(n): after type propagation
each node n is associated with a set of types,
called reaching_types(n)



10/4/99 17

Reaching_type Analysis

• Variable-type Analysis
Let  the name of the receiver o be the
representative of o. In Jimple, there are three
kinds of variable references:

1) Ordinary references: of form a, and refer to
locals and parameters. The name C.m.a is
used as the representative

2) Field references: of form a.f where a could
be a local, a parameter, or this. The name C.f
where C is the name of the class defining
field f is used as the representative

3) Array references: of form a[x] where a is a
local or parameter, and x is a local, parameter,
or constant. The name C.m.a is used as the
representative, similar to the ordinary
reference case.



10/4/99 18

Variable-type Analysis

• Constructing the Type Propagation Graph

--- Nodes

For every class C included in P,

1)for every field f in C, where f has an
object(reference) type, create  a node
labeled with C.f

For every method C.m that is included in the
conservative call graph of P

1)for every formal parameter pi of C.m,
where pi has an object type, create a node
labeled C.m.pi

2) for every local variable li of C.m, where li
has an object type, create a node labeled
C.m.li
3) create a node labeled C.m.this to 
represent the implicit first parameter

 4) create a node labeled C.m.return to
represent the return value C.m



10/4/99 19

Variable-type Analysis

• Constructing the Type Propagation Graph

---Edge

Assignment Statements of form  
lhs=rhs(lhs and rhs are ordinary, field
or array reference):

Add a directed edge from the 
representative node for rhs to 
the representative node of lhs.

Method Calls of form lhs = 
o.m(a1,a2,…,an); or o.m(a1,a2,…,an);.
O must be a local, a parameter, or the
special identifier this. The arguments
must be a constant, a local, or 

parameter name. 
(To  be continued)



10/4/99 20

Variable_type Analysis

• Constructing the Type Propagation Graph

---Edge

Method Calls (continued) 

 The method call corresponds to some 
call site, call itC.m[I], in the conservative
call graph. 

For each C’.m’ that is the target of of 
C.m[I] in conservative call graph,
1)  Add an edge from the representative

of o to C’.m’.this

2) if the return type is not void add an 
edge from C’.m’.return to the 
representative for lhs

3) for each argument ai that has object 
type, add an edge from the 
representative  of ai to the 
representative of the matching 
parameter of C’.m’.



10/4/99 21

Variable-type Analysis

• Alias

The assignment rules assume that if a and
b are alias, then they should correspond to
the same node in the graph.

---  Ordinary references

// No Problem

Locals and parameters cannot be aliased in
Java

---  Field references

// No problem

All instances of objects with that field are
represented as one node in the graph



10/4/99 22

Variable-type Analysis

• Alias

--- Array reference

/*problem: Several different variable
names may refer to the same array.

e.g. A[] a = new A[10]; Object o1 = a;
Object o2 = o1; A[] b = (A[]) o2; */

Solution: when adding edges for
assignments of the form lhs = rhs, where
both sides are of type java.lang.Object, or
when at least one side has an array type,
edges are added in both directions between
the representative of rhs and lhs.



10/4/99 23

Variable-type Analysis

• Type propagation graph

--- Size

Nodes: <= 2M+P+L+F

M: the number of methods

P: the total number of parameters

L: the total number of locals

F: the number of fields

Edges: O(C*Mc)

    Assignment statements: At most One 
edge for each Assignment statement

    Method calls: the number of edges 
depends on the number of targets for 
call sites. Worst Case: O(C*Mc) 
where C is the number of classes and
Mc is the number of method calls.



10/4/99 24

Variable-type Analysis

• Type propagation graph

--- Initialization

For each statement of the form lhs = new
A(); or lhs = new A[n] , add type A to the
Reaching types set of representative node
for lhs.

--- propagation

Phase 1: Collapse strongly-connected
components

Phase 2: Propagation on the DAG

(single pass, breadth-first)

Complexity: Both detecting Strongly-
connected components and propagation
have O(max(N,E)) operations, the most
expensive of which is a union of two
ReachingType sets.



10/4/99 25

Declared-Type Analysis

• Declared-Type Analysis

--- Similar to variable-type analysis,

--- the declared type of the variable
instead of the variable name is used
as the representative.

Thus, basically it is like putting all
variables with the same declared
type into the same equivalent class
---  faster but more imprecise



10/4/99 26

Experimental Results

• Benchmarks

• Improvements over the
Conservative Call Graph

• Conclusion


