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Outline

Direct Cost of Virtual Function Calls

(cf. Karel Driesen’s OOPSLA’96 paper)

Optimization and Its Effects

reduction of virtual fn calls
overall execution time
code size

|-cache misses

Conclusions



Implementation of Virtual Function Calls

Virtual Function Table (VFT)
a table of virtual function pointers

a VFT per class

a VFT pointer per object

multiple inheritance

VFT « objectAddr[VFToffset] X
delta « VFT[deltaOffset]

selectorAddr«— VFT[selectorOffset] x
objectAddr« objectAddr + delta

call selectorAddr X X

cost * frequency



Direct Cost of Virtual Function Calls
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Figure 7. Direct cost of standard VFT dispatch
(unmodified benchmarks)

Figure 18. Cycles per dispatch



Summary

* a median of 5.2% additional cycles
* a median of 3.7% additional instr’s
* cycle cost/instr cost varies substantially
* cost insensitive to branch penalty
* cost proportional to branch misprediction
--- a median of 65% prediction rate
--- some can be predicted well 90%

--- some simply cannot be predicted well

* cost sensitive to load latency, issue width

* 5-10% performance improvement for
best dispatch mechanism

* relative dispatch overhead increases
moderately in the future



Implementation of Optimization

original sample
C++ section 4.2 input
program
section 4.2 section 4.4
baéehne VPROF instru-
. all-in-one compiler mented program
combiner C++ (based on executable execution
source
GCC)
receiver
class
infor -
mation
optimized final
optimizing all-in-one host C+ optimized

compiler > C++ executable

compiler(s )

source

section 4.5

Figur e 1. Overview of optimization process

* source-to-source

* type test and "inline" annotation

* annotate " inline" (per call site) if
--- receiver classes are "hot" (40%)
--- call sites are "hot" (0.1%)

* at most one case per send
* back-end always inlines



Benchmarks

program lines of code
name description original | baseline
deltablue [incremental dataflow constraint solver 1,000 1,400
eqn type-setting program for mathematical equations 8,300 10,800
1dl SunSoft’s IDL compiler (version 1.3) using the demonstration | 13,900 25,900
back end which exercises the front end but produces no
translated output.
1XX IDL parser generating C++ stubs, distributed as part of the 11,600 11,900
Fresco library (which is part of X11R6). Although it performs
a function similar to IDL, the program was developed
independently and is structured differently.
lcom optimizing compiler for a hardware description language 14,100 16,200
developed at the University of Guelph.
porky back-end optimizer that is part of the Stanford SUIF compiler | 22,900 41,100
system
richards [simple operating system simulator 500 1,100
troff GNU groff version 1.09, a batch-style text formatting 19,200 21,500
program
Table 3. Benchmark programs
Name Description 8 # of indi- < b3t active
§ rect _qé -% . . © ‘°\: branches
% branches E ‘\5 § i\z % % 2 20 .
idl IDL compiler? OO | 141,883,641 | 47 6 (93.2| 3.2 3.6 [97.1] 0.1| 2.8|] 70| 543
jhm JHMP 6-12M OO0 | 15]6,000,000 | 47 5(93.6| 1.2] 52 (58.7] 1.4139.9(|] 34| 155
self Self-93 VM: 5-6M | OO | 77 11,000,000 | 56 7176.0] 4.4119.6 |140.1 |31.6[28.3(|848 | 1855
xlisp SPEC95 C 55 (6,000,000 | 69 11 0.0] 0.1]99.9 |138.9] 9.0(52.1 4 13
troff GNU groff 1.09 OO0 | 19(1,110,592 | 90| 13 ]73.7|12.5]|13.8 |41.913.6[44.5|| 61| 161
lcom HDL® compiler 00| 141,737,751 | 97 10 163.2[36.8 [ 0.0 [33.5[54.0[12.5]] 87| 328
AVG-100: instr/indirect < 100 2412,955,331 | 68 9 [66.6| 9.7123.7 |51.7]18.3]30.0[|184 | 509
perl SPEC95 C 211 300,000 [ 113 171 0.031.7(68.3 [41.2| 0.0]58.8 71 24
porky scalar optimizer! |00 | 235,392,890 | 138 19 170.6 [23.8 5.6 [15.6 8.1|76.3|[ 89| 285
ixx IDL parser® 00| 12| 212,035 139 18 |46.5(52.2( 1.3 [37.1| 6.4[56.5][ 91| 203
edg C++ front end C | 114 548,893 | 149 23 0.0]162.4137.6 | 7.9129.662.5(|186( 350
eqn equation typesetter [ OO 8| 296,425 | 159 | 25(33.8]66.2| 0.0 | 4.237.8|58.0|] 58| 114
gcc SPEC95 C |131| 864,838 | 176 | 31| 0.0]31.5]68.5| 0.8 1.7|97.5[] 95 166
beta BETA compiler 00| 72]1,005995| 188 | 23| 0.0| 2.3]197.7 |18.7]28.1|53.2]|135| 376




The Effects of Compiler Optimization

relative virtual function calls

relative code S|ze
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Figure 3. Virtual function calls
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Figure 8. Code size
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Figure 5. Execution time of optimized programs
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Figure 10. Instruction cache misses



Summary

* (virtual fn call reduction)
--- TF/comb effective (80%), CHA less

many programs do not have enough
monomotrphic calls to be optimized,

but have few targets !!

(performance impact)
--- TF/comb best (18% speedup)
--- baseline faster than original

lower bound !

(program size)
--- TF/comb barely increase (8%)

"hot" call sites work!

* (I-cache misses)
--- increase small (10%)

misses sensitive to code placement,
insensitive to optimization



All-Virtual Version
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Figure 4. Virtual function calls of “allvirtual” programs Figure 7. Execution time of “allvirtual” programs
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Figure 9. Code size of “allvirtual” programs Figure 11. Instruction cache misses of “all-virtual” programs



Summary (All-Virtual vs Unmodified)

* (virtual fn call reduction)
--- calls increases 5 times
- TF (88% vs 80%), CHA (92% vs 4%)

* (performance impact)
--- 26% Vs 18%

* (program size)
--- 11% vs 8%

* (I-cache misses)
--- similar



How hot is really "hot" ?
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Figure 11. Performance characteristics as a function of inlining threshold
(averages over all programs)

"hot" calls:
default is 40%

"hot" call sites:

0.1% : code size increase 11%
0.0%: 23%
(all-virtual) 144%



Conclusions

TF effective (18% speedup, 80% reduction)
CHA is ineffective in reducing v.f. calls
Inlining doesn’t increase code size too much
Results underestimate performance gains
Programmers use v.f. more liberally
Relative cost of v.f. calls will increase

V.F. call reduction becomes critical



