
1

Monitors and Exceptions : How to
Implement Java efficiently

Andreas Krall and Mark Probst

Technische Universitaet Wien

2

Outline
• Exceptions in CACAO

– Exception implementation techniques

– CACAO’s implementation

– conclusions

• Monitor Implementations
– SUN ’s monitors

– CACAO

– “Thin Locks”

– Meta-locks

– conclusions

3

Exceptions in Java

• Implicit : null pointer , array out of bounds ,
division by 0

• Explicit (throw)

• Catching an exception
try { …}

catch (Exception_1 e1) { …}

…

catch (Exception_n en) { …}

finally {…}

4

Exceptions in Java (cont.)
class E

{ public void f() {

int i;

 try {

 try {

 i=1/0;

 }

 catch (ArithmeticException ae) {

 ae.printStackTrace();

 }

 }

 catch (Exception e) {

 e.printStackTrace();

 }}}

Method void f()

 0 iconst_0

 1 istore_1

 2 iconst_1

 3 iconst_0

 4 idiv

 5 istore_1

 6 goto 22

 9 astore_2

 10 aload_2

 11 invokevirtual #7 <Method void printStackTrace()>

 14 goto 22

 17 astore_2

 18 aload_2

 19 invokevirtual #7 <Method void printStackTrace()>

 22 return

Exception table:

 from to target type

 2 6 9 <Class java.lang.ArithmeticException>

 2 17 17 <Class java.lang.Exception>

5

Exceptions in Java (cont.)
class EF
{
public void f()
 { int i=0;

try {
 i=1/0;}
catch (ArithmeticException ae) {
 ae.printStackTrace(); }
finally {

 i++;
}}}

Method void f()

 0 iconst_0

 1 istore_1

 2 iconst_1

 3 iconst_0

 4 idiv

 5 istore_1

 6 goto 19

 9 astore 4

 11 aload 4

 13 invokevirtual #6 <Method void printStackTrace()>

 16 goto 19

 19 jsr 31

 22 goto 37

 25 astore_2

 26 jsr 31

 29 aload_2

 30 athrow

 31 astore_3

 32 iinc 1 1

 35 ret 3

 37 return

Exception table:

 from to target type

 2 6 9 <Class java.lang.ArithmeticException>

 2 19 25 any

6

Exceptions in Java (cont.)
• Each method has an exception table

• An entry in the table contains

– Address of the exception handler

– bytecode address range for which the handler is used

• When an exception occurs

– If it is caught, the handler is executed

– If it is not caught , it is thrown to the calling method

• Code motion limitations
– Before the exception raising instruction all code must have been executed

– No instruction after the raising instruction can be started

7

Exception implementation
techniques

• Static try block table (Java)

– Check and search the exception at run time

• Dynamically create a list of try block data structures (C++ ,
Ada)

– Drawback : creates a data structure even if the exception is
not thrown (the common case)

• Function with 2 return values (old CACAO)

– An additional register is set to non-zero if an exception is
thrown and not caught , and the function returns

– At function return if register is non-zero , the handler is
executed

8

Motivation for a change

• # of method invocations - 2 magnitudes bigger
that # of try blocks

• Exceptions are rarely raised

• Lots of null pointer checks (in Java at run
time)

JavaLex Javac Espresso Toba Java_cup
Null pointer checks 6859 8197 11114 5825 7406
Method calls 3226 7498 7515 4401 5310
Try block 20 113 44 28 27

9

The new exception handling scheme

• CACAO
– JIT

– Fastest JVM for Alpha processor (1998)

• Goal : generate native code by CACAO JIT

• Achieved
– Reduced generated code by a half (compared with the old

CACAO)

– Run-time check of null pointers done by hardware

10

CACAO stack frame

• Contains only copies of
– Saved registers

– Spilled registers

• Doesn’t contain
– The saved frame pointer

– Size of the frame (used only by frame allocating/de-
allocating routines)

• Additional information is needed for exception
handling

11

CACAO exception handling

• Method layout in CACAO
– Constants

• framesize

• isleaf - flag which is true if the method is a leaf

• intsave - # of saved integer registers

• floatsave - # of saved FP registers

• extable - exeption table (similar to JVM table)

– Code

12

CACAO exception handling

• Mechanism: similar as Java , but at native code level

– Check if there is a handler for the raised exception

– Yes: run it

– No: unwind the stack and search in the parent

• Info from constant area is used for register restoration and
stack pointer update

• Bytecode must be translated in native code : complications

– Elimination of “dead” basic blocks : info about them must be
kept if the exception table points to it

– No reordering of basic blocks allowed (?)

13

CACAO exception handling(cont)

• No explicit null pointer checks

– First 64K of memory protected against r/w

– If a segmentation violation occurs

• catch the signal

• if within 64k generate null pointer exception

14

Results and conclusions

• Exception handling scheme in CACAO

• Not noticeable improvement in the run-time (3 % , but
inaccuracy of measurement in the same range)

• Code size nearly halved

JavaLex Javac Espresso Toba Java_cup
CACAO old 61629 156907 122951 67602 87489
CACAO new 37523 86346 69212 41315 52386

15

Monitor implementations

• SUN ’s monitors

• CACAO

• “Thin Locks”

• Meta-locks

• conclusions

16

Synchronization constructs in Java

• Synchronized methods
– When executed , the thread tries to lock the object

– If object not already locked by other thread , it succeeds and executes the
method body

– If another thread holds the lock the current thread blocks until the lock is
released

• “synchronized” statement
synchronized (expr) {

statements }

– Same rules as for synchronized methods

17

Java monitors versus “classical”
monitors

• Java monitors are transparently embedded into
the object (any object is a monitor)

• Java monitors may be entered recursively by the
same thread

• Java monitors can use only a single implicit
condition variable (wait/notify mechanism)

18

Wait/notify/notifyAll

• All can be called only in a synchronized method or in a
synchronized statement

• wait() - blocks the current thread until a notification is sent

synchronized (o) { …

while (!condition) wait(); …}

• notifyAll - notifies all the waiting threads that the condition has
changed

 synchronized (o) { …

change condition ; notifyAll();}

• notify - notifies only one waiting thread

19

Bytecode representation of
synchronization

• Bytecode instructions : monitorenter and monitorexit

• Synchronized methods

– Don’t use monitorenter and monitorexit

– Each method has a flag ACC_SYNCHRONIZED , which is
set if the method is declared synchronized

– if flag set , current thread tries to acquire the lock first

• “synchronized” statements
– Use monitorenter and monitorexit

20

Sun’s monitor implementation

• Object table

– Entries called handles: heap reference to an object , therefore
unique (object identifiers)

• Monitor cache

– Table which maps a handle to a monitor structure

• Monitor structure : data for performing the synchronization

• Whenever a thread synchronizes on an object , it first checks if
the handle is mapped to a monitor structure

– A table lookup must be performed

– A monitor structure is created if necessary

21

Sun’s monitor implementation

• Space

– Space efficient: monitor structures created only when threads
try to synchronize on objects

• Time

– Not efficient: a table lookup must be performed for each
synchronization

• Scalability

– Not scalable: monitor cache is a point of contention between
threads

22

Alternative monitor
implementations

• David Bacon & comp : Thin locks: Featherweight
Synchronization for Java (IBM T.J. Watson RC), PLDI ‘98

• Andreas Krall & Max Probst : Monitors and Exceptions : How
to Implement Java Efficiently, Java Workshop for HP
Computing ‘98

• Ole Agesen & comp: An Efficient Meta-lock for Implementing
Synchronization (Sun), OOPSLA ‘99

23

Common cases (Bacon &comp)

• locking an unlocked object

• locking an object already locked by the same thread a small
number of times

• locking an object already locked by the same thread many
number of times

• attempting to lock an object already locked by another thread , for
which no other threads are waiting

• attempting to lock an object already locked by another thread , for
which other threads are waiting

24

CACAO monitors

• monitorenter and monitorexit implemented using mutexes

• Observation: number of mutexes locked in the same time is
small

• Use a mutex cache : implemented as a hash-table

• First entry in the bucket never de-allocated (most frequent case
uses it w/o incurring allocate/deallocate costs)

25

CACAO monitors(cont)

• Space
– Very efficient : worst case # of mutexes = # of buckets + # of parallel

mutexes

• Time
– Hash table lookup is fast (especially for a small # of mutexes)

– Allocation/deallocation time spent in the most common case

• Scalability
– Hash-table of mutexes - still contention point

26

Thin locks
• Used for first 2 common cases

• If any other case occurs , the lock is “inflated” and never
“deflated” again

• Use 24 bits in the object header (if already available : no space
overhead !)

– 1 bit : thin/fat lock

– 15 bits : owning thread

– 8 bits : nesting count

• When a thread acquires the lock it becomes the owner of it (by
using a compare-and-swap operation)

• When it releases the lock, it restores the ownership to 0

27

Thin locks(cont)

• Only the owner manipulates the synchronization data (different
in the Meta-locks case)

• Inflation : the thread owner field is converted into a pointer to a
data structure which contains:
– Thread owner

– Nesting count

– Queue of waiters

• If the thread t1 holds a thin lock and the thread t2 tries to access
it , t2 will
– Spin-lock until t1 releases the lock (bad!)

– Inflate the lock afterwards

28

Thin locks(cont.)

• Space
– If 24 bits available in object header : no space overhead for the common

cases !

– Still efficient for the uncommon cases : space neaded only when
synchronization is performed

• Time
– Very efficient in the common cases (no lookup needed , synchronization

data locally available)

– Problems can occur with spin-locking

• Scalability
– Scalable: synchronization information kept by each owning thread

29

Meta-locks

• Two level scheme for synchronization

• meta-locks protect the access to the synchronization data (any
thread can modify it)

• Only 2 bits in the object header are needed

• The other 30 bits of the word are displaced into a data structure
which contains synchronization data.

• When a thread tries to perform a synchronization operation , it
first acquires the meta-lock
– If no other thread has the lock , it acquires it and releases the meta-lock

– If some other thread has the lock , the thread adds a record to the queue
of waiters and then releases the meta-lock

30

Meta-locks(cont)

• When a thread tries to perform a synchronization operation , it
first acquires the meta-lock (quick if no contention)
– Acquiring the lock

• If no other thread has the lock , it acquires it and releases the meta-lock

• If some other thread has the lock , the thread adds a record to the queue of
waiters and then releases the meta-lock

– Releasing the lock
• If no other threads are trying to acquire the lock it just releases the metalock

• If other threads are waiting in the queue , it wakes up the next in the queue

31

Meta-locks(cont)

• Space

– Only 2 bits per object are needed for objects that never
synchronize (thin-lock 24 bits regardless)

– Amounts to total size of lock records (small compared to the
necessary heap & stack space)

• Time

– Very efficient (no lookup needed)

– No spin-lock as thin locks

• Scalability

– Scalable (no centralized contention point)

32

Conclusions
Space efficiency Time efficiency Scalability

Sun -efficient
-monitor structures
created upon
synchronization

-inefficient
-monitor cache
lookup

-not scalable:monitor
cache is contention point

CACAO -efficient
- size : prop. to the
number of parallel
mutexes

-mutex cache lookup -mutex cache is contention
point

Thin-
locks

-efficient
24 bits /object regardless if
synchronization is used

-efficient(no lookup)
-problems with busy
waiting

-scalable (decentralized)

Meta-
locks

-efficient
2 bits/object if
synchronization is used

-efficient(no lookup)
-no busy waiting

-scalable
(decentralized)

33

Complementary approach

• Static analysis for removing unnecessary lock operations
– One monitor entered several times by the same thread

– Enclosed monitors (one thread acquires the second monitor)

– Monitor accessible only to one thread (eliminate lock operations)

– Problems with dynamic class loading and reflection

• Papers
– Aldrich,Chambers and comp. , Static analyses for eliminating

unnecessary synchronization from Java programs, SAS ‘99

– Bogda, Hoelzle, Removing unnecessary synchronization in Java,
OOPSLA ‘99

