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Goal

• Provide a Java framework for optimizing
and annotating bytecode

• provide a set of API’s easy to use and
efficient enough for developing competitive
optimizers
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Currently used methods for
improving Java performance

• JIT compilers

• Way-Ahead-Of-Time Java compilers

• Optimizing bytecode directly
– Must address expensive bytecode operations : virtual

method call, interface call, object allocation

• Annotating the bytecode
– Statically checking the safety of memory accesses and

annotating the bytecode ( eg: array bounds)



Contributions

• 3 intermediate representations used for
bytecode optimizations and de-compilations

• Support for both intra-procedural and whole
program optimizations

• Able to add future support for bytecode
annotation



Framework overview
• Baf - streamlined representation of

bytecode

• Jimple - typed 3 - address code
suitable for optimizations

• Grimp - aggregated version of
Jimple suitable for decompilation
and bytecode codification



Intermediate representations

• Baf
– motivation

• easier to manipulate than the bytecode (abstracts away the
constant pool)

• some bytecode instructions are untyped (dup ,swap) : difficult
to estimate their effect and therefore optimize

– description
• stack-based

• fully typed instructions

• untyped variables



Intermediate
representations(cont.)

• Jimple
– motivation

• stack code optimization is difficult
• 2 types of variables : locals and stack locations
• untyped nature of stack

– description
• 3 address code
• stack replaced by local variables
• untyped instructions
• typed local variables
• ideal for optimizations



Intermediate
representations(cont.)

• Grimp
– motivation

• IR difficult to read

• 3 address code difficult to deal in some cases ( eg. Generating
good stack code)

– description
• compacted version of Jimple : flattened expressions, new and

invokespecial compacted to new

• looks like a partially decompiled Java code





Transformations

• Bytecode -> Baf
– stack simulation : types of untyped instructions

– distributing the constant pool

• Baf -> Jimple
– produce naïve 3 address code

– type the local variables ( paper)

– clean up the code (simply collapsing def-use pairs)



Transformations(cont.)

• Jimple -> Grimp
– aggregate expressions
– fold constructors
– aggregate expressions

• Grimp -> Baf
– expression trees converted to stack based code

• Baf ->Bytecode
– Pack local variable for placing onto Frame
– Optimize load/stores (eliminate redundancies)
– Compute maximum stack height ( required by JVM)
– Produce the bytecode



Optimizations

• Scalar optimizations (implemented)
– constant propagation and folding

– conditional and unconditional branch elimination

– copy propagation

– dead assignment and unreachable code elimination

– expression aggregation

• Scalar optimizations (future)
– common sub-expression elimination

– loop invariant removal



Optimizations(cont.)

• Whole program optimizations (OOP)
– call graph based

– methods for constructing the call graph
• class hierarchy analysis

• rapid type analysis

• variable type analysis (*)

– methods inlining



Experimental results



Conclusions

• Soot : framework for optimizing bytecode
• 3 IRs
• transformations between IRs
• useful for optimizing and decompilation
• Speedup for both interpreter and JIT
• Present work

– Eliminating redundant loads/stores from baff
– Adding new optimizations( loop invariant removal ,

common subexpression elimination)
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Introduction

• Bytecode
– target IR for a variety of compilers (Ada ,ML,Scheme,Eiffel)
– “well-behaved”(verifiable) - checked by bytecode verifier (eg.

each method invocation has the correct number of arguments,
arguments are well-typed)

– bytecode verification
• static : flow analysis for local type estimation (well typed

instructions) and not global
• dynamic (eg. Array bounds checks)

– local variables of each method kept on the frame of the method and
accessed by index ( are not typed)



Introduction(cont.)

• Drawbacks of bytecode
– stack-based

• complicates the analysis
• doesn’t map nicely on existing architectures
• not easy readable

– local variables not typed ( could be used for both
analysis and decompilation)

• Addressing the drawbacks
– IR representations ( Jimple)
– this paper : typing Jimple





Introduction (cont.)

• Problem definition
– Given: an untyped Jimple method

– Find :  static types of local variables

• Modeled as a graph problem
– hard nodes : types in the declared hierarchy

– soft nodes : type variables (to be determined)

– directed edges : constraints between 2 nodes

• constraint : denoted a<-b if b is assignable to a



Challenges of Types

• Declared types versus types at program
points
– verifier checks the type at each local point ( are the

operands of the instruction right ?)

– at control flow merge verifier takes LCAC ( least
common ancestor class of the types of the branch)

– program from fig.2 will verify , but there is no static
solution  ( a solution where copies are introduced will
be presented later)





Challenges of Types(cont.)

• Type problems due to interfaces (multiple
inheritance)
– LCAC strategy to resolve types from different branches

breaks for multiple inheritance

– Java verifier checks at run-time

– Hierarchy I - statically typeable (but can be expensive
in the presence of many ancestors)

– Hierarchy II  - not statically typeable (extra-copies can
solve the problem)
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Typing algorithm

• Algorithm overview
– abstract problem into a constraint system

(directed graph problem)

– restrict the problem to programs w/o arrays

– apply simplifying transformations on the graph

– if no solution found so far perform an
exponential search (algorithm is shown to be
NP-hard)



Typing algorithm(cont.)

• Building the constraint system
– a<-b , where a,b - nodes and b is assignable to

a
• simple assignment a=b => T(a)<-T(b)

• binary expression assignment a=b+3 => T(a)<-T(b),

T(a)<-int and T(b)<-int

• method invocationa=b.equals© => T(a)<-int ,

java.lang.Object<-T(b) and java.lamg.Object<-T(c)



Typing algorithm(cont.)

• Transformations
– connected components

– merging primitive
types

– transitive constraints



Typing algorithm(cont.)

– merging single constraints
• single parent constraint x if y<-x  and x is not

parent of anybody else
• single child constraint y if x<-y and x is not child of

anybody else
• transformations

– merge all single child constrains
– merge all soft parent constraints
– merge with LCA
– merge all remaining parent constraints

– if no solution found perform an exhaustive
search



Extending the algorithm to arrays

• Definitions
– array constraint a-->b means a is an array

whose type is b

– array depth : number of indirections necessary
to get a non-array type (eg. A[][] has depth 2)



Extending the algorithm to
arrays(cont.)

• Algorithm
– starting from hard nodes

• follow parent constraints : modify the parent depths s.t. they
are <= than child’s depth

• follow array constraints : assign to element type array depth -1
– propagate array constraints on arrays

• propagate a constraint between 2 nodes at equal depth to a
constraint between their depth 0 element types

• change a constraint between 2 nodes of different depth to a
constraint between the depth 0 element type of lowest depth
node and java.lang.Clonable

– find a solution using the non-array algorithm and only
0-depths nodes

– propagate the solution back to array depths





Program transformations

– Performed when there is no static type solution

• Type casts
s3: ((IA)a).f();
– makes fig. 3 program typeable
– but adds run-time overhead

• Copy statements
– introducing copy statements following new statements to take care

of the common case of the creation of instances on 2 branches
– well known techniques can get rid of extra copy statements( copy

propagation)





Experimental results
Typing Java bytecode



Experimental results
Improving Class Hierarchy analysis

–receiver type more accurately
determined



Conclusion

• Static type inference algorithm for typing
Java bytecode

• emphasized the difference between well-
behaved and well-typed bytecode

• experimental results show how the
algorithm improves the results of further
analysis


