
1
10/14/99

Call Graph Construction in
Object-Oriented Languages

D. Grove, G. DeFouw, J. Dean, G. Chambers

University of Washington

OOPSLA’97



2
10/14/99

Overview

• Motivation

• Theoretical framework

• Experimental results

• Conclusions



3
10/14/99

Call Graph Construction

• Optimizing compilers
– Interprocedural analyses

– Need call graph

– Difficulty: dynamic dispatch

• Solution: construct the call graph simultaneously
with interprocedural class analysis
– Class analysis: set of classes for each variable

• Subsequent interprocedural analyses



4
10/14/99

Context-sensitivity

• Context-insensitive call graph
– One node per procedure

– Set of call sites per node

– Set of callees per call site

• Context-sensitive call graph
– Different copies (contours) for different calling

contexts

– One dimension of context-sensitivity



5
10/14/99

Other Dimensions

• Instance variable contours
– One or more contours per source-level instance

variable declaration

– Most analyses are context-insensitive

– Example: separate contours for each subclass

• Class contours
– One or more contours per source-level class

– Different instantiation sites create different
contours

– Compute a set of class contours for each variable



6
10/14/99

Call Graph Domain

ClassContour = 2Tuple(Class,ClassKey)

ClassContourSet = Pow(ClassContour)

InstVarContour = 3Tuple(InstVariable,InstVarKey,
ClassContourSet)

InstVarContourSet = Pow(InstVarContour)



7
10/14/99

Call Graph Domain (cont)
ProcContour = 7Tuple(Procedure,ProcKey,

ProcContour,

Map(Variable,ClassContourSet),

Map(CallSite,ProcContourSet),

Map(LoadSite,InstVarContourSet),

Map(StoreSite,InstVarContourSet))

ProcContourSet = Pow(ProcContour)

CallGraph = 2Tuple(ProcContourSet,InstVarContourSet)



8
10/14/99

Examples of Algorithms

• Context-insensitive (0-CFA)

• Based on the dynamic call chain
– k enclosing calling contours (call sites?): k-CFA

– l contours around class instantiation site: k-l-CFA

– Examples: k=1 and l=1

• Based on the classes of the actuals
– Cartesian Product Algorithm

– Simple Class Sets

– Bounded versions



9
10/14/99

Less precise algorithms

• Gselector: incompatible names/number of arguments

• Gstatic: CHA for statically-typed languages

• Gintra: flow-sensitive intraprocedural analysis

• GRTA: Rapid Type Analysis

• Gunif: unification-based, Steensgaard-like analysis



10
10/14/99

Impact on performance

• Base version: intraprocedural analysis and
optimizations

• Optimized version: additional interprocedural
analyses improve intraprocedural optimizations
– Most important: interprocedural class analysis for

better devirtualization

– Treeshaking: removal of unreachable methods

• Disappointing speedups for Java



11
10/14/99

Conclusions

• General framework for a family of analyses

• Several dimensions in the design space

• Are there benefits from context-sensitivity?

– Did not use procedure specialization

• Scalability may become a problem for flow-
sensitive analyses

• Is it worth it?


